re)

REPORT DOCUMENTATION PAGE AFRL-SR-AR-TR-03-

Public reporting burden for this collection of infonnation is estimated to average 1 hour per response, including the time for reviewing ini the
data needed, and completing and reviewing this collection of information. Send comments regarding this burdeq estimatzs#any other. 0% ng
this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0 .
4302. Respondents should be awars that notwithstanding any other provision of law, no person shall be subject to any penalty for faifin ntly
valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE ’ 3. DATES COVERED (From-To) =~ =~
14-02-2003 Final Report : , 01-06-2001 - 31-08-2002
4. TITLE AND SUBTITLE . 5a. CONTRACT NUMBER
F49620-01-1-0282
Faculty Fellowship in Support of Tolerating Intrusions 5b. GRANT NUMBER
Through Secure SystemReconfiguration
' 5c. PROGRAM ELEMENT NUMBER
| 6. AUTHOR(S) : 5d. PROJECT-NUMBER
Heimbigner, Dennis M. 5e. TASK NUMBER
Wolf, Alexander L.
5f. WORK UNIT NUMBER
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) ‘ 8. PERFORMING ORGANIZATION REPORT
NUMBER .
Attn. Ralph Brown : 0202.00.0343B
Office of Contracts and Grants
University of Colorado
3100 Marine St.Rm.481
Boulder,CO 80309-0572
9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)
; AFOSR
Attn. Dr. Spencer Wu 0f§
Air Force Office of Scientific Research 11. SPONSOR/MONITOR'S REPORT
4015 wWilson Blvd, Room 713) NUMBER(S)
‘Arlington, VA 22203-1954

[12, DISTRIBUTION / AVAILABILITY STAT. WBN STATEMENT—A - | “.“"""“"“""“**>-—~'—~-—»~~-~-——-A_-_..____“nﬁ

RIB :
Unrestricted Dl;vs!?Tproved for Public Release

Distribution Unlimited | 2 0 0 3 0
13. SUPPLEMENTARY NQTES - 1| 3 2 6 0 2 1

14. ABSTRACT

This fellowship was intended to increase the capabilities of the identified fellow with
respect to the area of security and information assurance by placing the fellow at the
University of California at Davis Computer Science Department. This process succeeded by a
number of measures. The fellow was able to quickly get up-to-speed on security. He
identified several possible new lines of research in the areas of untrusted computing, use of
secure hardware, and responses to. flash worms. He also developed a new use for deception,
which has received funding from AFRL. These ideas were presented and critiqued through
several colloquium presentations to the security group -at UC, Davis. The fellow is also
developing a curriculum for a course in undergraduate security using the new textbook by
Professor Matt Bishop of UC, Davis. A number of publications also resulted from this

fellowship.

15. SUBJECT TERMS .
Intrusion Tolerance, Security, Reconfiguration, secure co-processor, anti-tamper, flash worm

16. SECURITY CLASSIFICATION OF: 17. LIMITATION 18. NUMBER | 19a. NAME OF RESPONSIBLE PERSON
OF ABSTRACT OF PAGES Dennis Heimbigner
a. REPORT b. ABSTRACT ¢. THIS PAGE 19b. TELEPHONE NUMBER (include area
. uuU 3 6 code)
U U 19} 1 303-492-6643

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. 239.18

BEST AVAILABLE COPY

BEST AVAILABLE COPY

Faculty Fellowship in Support of Tolerating Intrusions
Through Secure System Reconfiguration

AFOSR Contract F49620-01-1-0282
Final Report for Period 5/1/2001 — 8/31/2002

02/14/2003

Dennis Heimbigner and Alexander Wolf
Computer Science Department
University of Colorado, Boulder

1 Introduction

The purpose of this fellowship was to increase the capabilities of the identified fellow with
respect to three activities: education, curriculum development, and research in the area of
security and information assurance. The plan was to place the fellow at the University of
California at Davis Computer Science Department. Residence at UC Davis for an extended
period of time would allow the fellow to obtain sufficient training to implement a core course in
security at the University of Colorado. Equally important, the fellow was to initiate security
related research growing out of his background in software and systems and extending the
research growing out of the parent proposal. Finally, it was hoped that the fellow would serve as
the focal point for introducing security concerns into other courses and into other research
programs in the University of Colorado Department of Computer Science.

2 Objectives

The following three objectives are abbreviated versions of the ones described in the proposal.
1. Education: The fellow is expected to increase his knowledge in selected areas of security.

2. Curriculum Development: The fellow will obtain sufficient experiénce and knowledge to
establish and teach at least one core security class at the University of Colorado.

3. Research: The fellow will extend his current research in the direction of security through
interaction with researchers at UC Davis, by attending relevant professional meetings, and by
developing new research projects in the area of security.

3 Personnel Supported

A specific research faculty person, Dr. Dennis Heimbigper, filled the role of the fellow funded

under this proposal.

/

DISTRIBUTION STATEMENT A
Approved for Public Release
Distribution Unlimited

) BEST AVAILABLE COPY
4 Accomplishments

4.1 Research Accomplishments

The fellow was rapidly able to absorb significant material about security and was able to apply
that material to develop some promising new research ideas, one of which as already resulted in
external funding. These ideas are briefly described in the following sections.

4.1.1 A Tamper-Detecting Implementation of Lisp

The fellow has developed a novel approach to the problem of carrying out trusted computations
in an untrusted environment. This approach combines a secure co-processor with an untrusted
host computer. A tamper-detecting language interpreter (for Lisp) executes on the secure co-
processor while the code and data of the program reside in the memory of the untrusted host. The
term “tamper-detecting” means that any attempt to corrupt a computation carried out by a
program in the language will be detected on-line and the computation aborted.

This approach has several advantages including ease of use and the ability to provide tamper-
detection for any program that can be constructed using the language. This new approach thus
provides a convenient and general mechanism for safe utilization of the memory of an untrusted .
host by the secure co-processor.

4.1.2 Architectural Degradation against Software Misuse

The fellow has developed an interesting new use for deceptive tactics against the insider
problem, where a person with legitimate access to a system utilizes that access to subvert the
system. Existing approaches, much like intrusion detection in general, have a significant problem
with false alarms. The term “false alarm” means that some person or mechanism has detected a
pattern of behavior that appears superficially to be suspect, but upon further investigation, turns
out to be, in fact, benign behavior.

False alarms present serious difficulties for security administrators. When the response to the
alarm is performed manually, the responder (typically the security/system administrator) can be
overwhelmed by large numbers of false alarms and can miss genuine alarms. For automated
responses, false alarms can cause overall system operation to seriously degrade as the system
thrashes between normal states and intrusion resistant states.

The proposed new approach provides a controlled sequence of responses to potential misuse that
allows for better response to false alarms while retaining the ability to disarm (and later rearm)
the software by degrees. Thus, false alarms would be met with more measured responses that
provided both time and information necessary to verify the correctness of the alarm. As the
seriousness of the misuse is ascertained, more severe responses can be brought to bear. In the
event of a false alarm, the response sequence and its effects should be reversible so that normal

operation is resumed.

The key element of the new approach is to use configuration information to reconfigure the
software system into increasingly informative and increasingly degraded modes of operation. By
informative, we mean that the component begins to capture and report more detailed information
about suspicious activities. Degraded means that the component begins to modify its outputs and
actions to reduce its functionality, or in more extreme case, even practice deception and provide

wholly or partially false outputs. This latter use of deception represents a new use for the
concepts first introduced by Cohen. '

The approach also provides two additional capabilities. The first is self-destruction — the ability
to reconfigure the software so that it appears to be working but has in fact had all important
information and capabilities destroyed, ideally without immediate knowledge by the misuser.
The second is restoration — the ability to reconfigure the software to undo degradation responses;
this is a unique capability made possible by our use of dynamic reconfiguration, and is important
in the event of false alarms or the external neutralizing of the misuse threat.

This work has received new funding through the AFRL Anti-Tamper program (Section 5).
4.1.3 Fast Response Mechanisms Against Fast-Moving Cyber-Attacks

The fellow is leading the development of a project to design, prototype, and evaluate a
mechanism for defending large-scale networks against fast-moving malicious attacks such as so-

_ called “flash worms”’.

Such attacks have the potential to corrupt a large fraction of the Internet within a small period of
time. The recent Slammer worm, for example, attacked some 75,00 Internet sites in less than 10
minutes. Such fast moving attacks will use increasingly complex combinations of highly
distributed attack modules, operating in parallel and coordinating as necessary to disable targeted
sites in the Internet.

The key to defending against such attacks is to “fight fire with fire” by developing an equally
fast response mechanism based on four major principles. ’

1. Subsumption: Local action modified by global concerns. Brook’s subsumption concept is
adopted, which in this context causes local sensor data to be routed to local agents who
rapidly initiate responses to mitigate attacks. These local responses are aggregated and
passed to more global agents. These global agents may modify or even suppress local actions
in order to achieve better global responses. :

2. Dynamic reconfiguration as the primary response mechanism. Responding to an attack
requires changing the behavior of the attacked systems. This in turn requires the ability to
dynamically reconfigure those systems to achieve the new behavior.

3. Response caching. Fast responses require that the choice of response and the resources
needed by that response must be readily available. Thus, various pre-computed resources
must be cached at various sites in the network so that they can be readily accessed as needed.

4. Intentional (property-based) communication. The systems to be protected may be numerous
and heterogeneous. It is logistically difficult for the defense system to maintain a detailed and
complete database of the state of these systems, and so a decentralized intention-based
mechanism is needed to communicate with systems based on their current characteristics.

This work extends the parent project: the DARPA-funded Willow project in Intrusion Tolerance.
This project is being pursued jointly with Karl Levitt at UC, Davis and John Knight at the

University of Virginia. ‘ :
4.1.4 Hardware-Assisted Intrusion Detection and Response

The fellow is exploring an approach to host-based intrusion detection and response that utilizes
secure co-processor hardware. This appears to be an approach that has received little attention in

the security community. This approach partially off-loads intrusion detection and response
software onto a secure co-processor in order to provide a reliable and unassailable enclave from
which the intrusion management software can monitor and control the host in order to detect and
repair attacks on the host's software.

Existing (host-based) intrusion detection and response systems (IDRS) generally execute as
regular software on the host machine being protected. The intrusion management software is
itself a target for attack, which if successful can simultangously disarm a major security
component and provide a fast path for gaining control of the host machine.

Attacks against the co-processor are difficult because it has a restricted functionality and is not
providing general services. Its sole purpose is to act as guardian for the associated host. If
anomalies are detected, then the co-processor can initiate responses to detect the cause of those
anomalies and to repair the system and bring it back to normal operating state.

The primary requirement on the co-processor is that it has unmediated access and control over
the host processor. The term “unmediated” is intended to indicate that the host has no ability to
stop monitoring, reporting, and repair actions by the co-processor. Examples of unmediated
activities include direct read/write access to the main memory of the host, a separate interface to
the network, and the ability to forcibly cause an interrupt of the host processor in order to cause
it to begin executing some specific code in memory.

If this research is successful, a number of interesting and important capabilities become feasible
or more secure; these include detection and repair of attacks, and the ability to provide better
capture of forensic evidence for attack analysis and prosecution. The research may also enable a
new market for secure co-processors.

4.1.5 Architectural Models in Support of Computer Forensics

The fellow has identified a promising new approach to supporting computer forensic analysis.
Such analysis is an important element in overall response to cyber-attacks. When a system
crashes, it is critically important to quickly identify the cause of the crash in order to determine if
it was caused by an attack. It is then important to identify anomalies indicating the attack
mechanism and effects in order to develop a defense against the attack.

Existing analysis tools such as the Coroner’s Toolkit are excellent at providing large quantities of
information about the state of a crashed computer, but only at a low level of abstraction provided
by the operating system: the processes running and the files open, for example.

What are desperately needed are higher level abstractions that can provide more insight into the
state of the system so that a forensic analyst can focus on the anomalies and quickly identify the

nature of any attack.

The proposed new approach utilizes various models of software systems to organize and present
high level abstractions about the state of crashed systems. The models provide both the “should-
be” configuration and the “as-is” configuration. The former represents the range of legal
configurations for which a system was designed. The latter represents the apparent configuration
of the system as it was at the time of the crash. These representations provide important
structural information about the programs that should be, and are, running and how they relate to
each other. They provide a high level framework to which other, related information can be
attached to provide a growing complex of information about the state of the crashed system.
They will also become the basis for presenting the information in ways that will highlight

discrepancies between the expected state and the crash state in order to guide the forensic analyst
"to potential problems. ’

Over time, this approach can be extended to include data from additional sources and subsequent
analyses of that data. We believe that our use of configuration information as the core will
produce a forensic analysis system significantly superior to the relatively un-integrated products
currently available.

4.2 Education Accomplishments

The fellow began his stay at the University of California at Davis by auditing a number of
courses related to security. This continued for the duration of his visit. As a result, the fellow was
able to rapidly get up-to-speed on the core security research issues. This was also aided by
attending colloquium talks that covered security related problems.

The specific courses audited by the fellow are identified in the following table.

Course No. Course Title Instructor Semester

ECS 227 | Modemn Cryptography Rogoway | Fall 2001
ECS 153 Introduction to Computer Security | Bishop Winter 2002

ECS 289A | Cryptography for E-Commerce Franklin Winter 2002
ECS 253 Cryptography and Data Security Wu Spring 2002
ECS 289M | Vulnerabilities and Policy Models Bishop Spring 2002

4.3 Curriculum Development Accomplishments

An important goal for this fellowship was to allow the fellow to return to Colorado and begin
development of at least one core security course. While it is probably unreasonable to suppose
that the fellow can teach graduate level courses in security (yet), experience at UC, Davis makes
it clear that he should be able to teach a general security course at the undergraduate level.

In line with this goal, the fellow has begun development of a syllabus and materials for that
general undergraduate security course. The content of this course is closely patterned after his
observations of Professor Matt Bishop at UC, Davis in teaching such a course at Davis. Of equal
importance is the fact that the course notes for Professor Bishop’s class have recently been
released as a textbook entitled “Computer Security: Art and Science” (Addison-Wesley 2002).
The fellow intends to use this book as the basis for the course he is developing.

5 Grants Received

1. AFRL, “Architectural Degradation Against Software Misuse”, $405,461. 2002-2004.

6 Presentations

The fellow gave four separate colloquium talks to the security group at University of California
Davis. The first talk was intended to inform that community about purpose of the fellow’s visit
and also to inform them about some of the research at the University of Colorado. Subsequent
talks were intended to present some potentially new research ideas and to obtain useful feedback.

1.

3.
4.

Title: Bend, Don't Break: Using Reconfiguration to Achieve Survivability (December 5,
2001). :

Title: Intrusion Management Using Architecture and Configuration Models (February 13,
2002)

Title: A Tamper-Resistant Programming Language (April 24, 2002)
Title: A Pie of P-Baked Security Ideas (June 19, 2002)

Also during the visit to Davis, the fellow participated in three external presentations relevant to.
the parent project.

1.

Demonstrated Willow intrusion tolerance prototype to the Joint Battlespace Infosphere (JBI)
group at the Air Force’s Rome Labs (7 September 2001).

Demonstrated our research at DARPA's DASADA 2002 Exposition and technology
demonstration trade show (1-2 July 2002).

Invited demonstration at DARPATECH 2002, which is DARPA's premier technology
conference (30 July — 1 August 2002)

Publications

“The Willow Survivability Architecture,” John Knight, Dennis Heimbigner, Alexahder Wolf,
Antonio Carzaniga, Jonathan Hill, and Premkumar Devanbu. Proc. of the 2001 International

Survivability Workshop.

“A Testbed for Configuration Management Policy Programming,” Andre van der Hoek,
Antonio Carzaniga, Dennis Heimbigner, and Alexander L. Wolf. IEEE Transactions on

Software Engineering 28(1):79—99 (Jan.2002).

“A Tamper-Resistant Programming Language,” D. Heimbigner, Department of Computer
Science Technical Report CU-CS-931-02, University of Colorado, May 2002. Also
submitted to SAM’03 as “A Tamper-Detecting Implementation of Lisp.”

“Intrusion Management Using Configurable Architecture Models,” D. Heimbigner and A.
Wolf, Department of Computer Science Technical Report CU-CS-929-02, University of
Colorado, May 2002.

“Reconfiguration in the Enterprise JavaBean Component Model,” M.J. Rutherford, K.

Anderson, A. Carzaniga, D. Heimbigner, and A.L. Wolf, Proceedings of IFIP/ACM Working
Conference on Component Deployment, Berlin, Germany, June 2002.

Copies of the above publications are enclosed with this report.

THE WILLOW SURVIVABILITY ARCHITECTURE

" John Knight Dennis Heimbigner Alexander Wolf+

Antonio Carzaniga®™ Jonathan Hill® Premkumar Devanbu **

*Department of Computer Science
University of Virginia -
Charlottesville, VA 22904-4740
- {knight,jch8f}@cs.virginia.edu

+Department of Computer Science . **Department of tComputer-Science :
“University of Colorado University of California
‘Boulder, CO 80309-0430 - ’ Davis, CA 95616-8562
{alw,dennis, carzanig}@cs.coloradoedu | devanbu@pcs.ucdavis.edu
Introduction ’ '

The Willow architecture provides a comprehenswe architectural approach to the prov1s1on of
survivability[B] in critical information networks. It is based on the notion that surv1vab1l1ty ofa
network requires reconfiguration at both the system and the application levels. The Willow notion
of reconfiguration is very general, and the architecture provides reconﬁgurahon mechamsms for
both automatic and manual network control. : '

In this paper we summarize the Willow concepts and prov1de an overview of the Willow
architecture. Finally we describe a demonstration application system that has been built on top of

a prototype Willow implementation.

Willow Concepts
The Willow survivability architecturep] is a secure, automated framework that effects a wide

spectrum of both proactive and reactive reconfigurations of large-scale, heterogeneous
distributed systems. The architecture is des1gned to enhance the surv1vab1l1ty of critical
networked information systems by: (a) ensuring that the correct configuration is in place and
remains in place dunng normal operation; (b) facilitating the reconfiguration of such systems in
response to anticipated threats before they occur (including secur1ty threats); and (c) recovering
from damage after it occurs (including security attacks).

Proactive reconﬁguratlon adds, removes, and replaces components and interconnections, or
changes their mode of operation. This form of reconfiguration, referred to as posturzng, is
designed to limit possible vulnerabilities when the possibility of a threat that will exploit them is
heightened. .An example of posturing would be a network- wide shutdown of non-essential
services, strengthening of cryptographlc keys, and disconnection of non-essential network links 1f
the release of a new worm is expected or infections have already been observed. ’

In a complementary fashion, reactive reconfiguration adds, removes, and replaces
components and interconnections to restore the 1ntegr1ty of a system in bounded time once
damage or intrusions have taken place. In-Willow, this is, in fact, network fault tolerance and
mechanisms are provided for both the detection of errors and recovery from them([7]. As an -
example of fault tolerance, the network might detect a coordinated attack on a distributed
application and respond automatically by activating copies of the application modules on

Page 1

different network riodes while configuring the system to ignore the suspect modules. The system
would perform this modification rapidly and inform system administrators of the change.

The Willow concept derives from a realization that software configuration control and
network fault tolerance are two different aspects of the general problem of overall control of
distributed systems. Both utilize specialized knowledge about the applications,. the resources
available and the network state to prepare and react to changing conditions for applications in a
network. The difference lies in the time frames at which the two aspects operate, and in the
mechanisms used to detect and respond to circumstances needing action. Network fault tolerance
is mostly time-bounded, needing prescribed responses to anticipated faults. Software
configuration management involves run-time analysis of network state to determine necessary
basic actions from a series of prescribed facts and newly available network state (new software
versions, operatlng system conditions, etc.)

The Willow architecture supports reconfiguration i ina Very broad sense, and reconfiguration
in this context refers to any scenario that is outside of normal, “steady-state” operation. Thus, for
example, initial system deployment is included intentionally in this definition as are system
modifications, posturing and so on. All are viewed merely as special cases of the general notion of
reconfiguration. More specifically, the system reconfigurations supported by Willow are:

« Initial application system deployment

* . Periodic application and operatmg system updates 1nclud1ng component replacement and
re-parameterization. . :

. Planned posture changes in response to anticipated threats

. Planned fault tolerance in response to anticipated component failures.

. Systemat1c best efforts to deal with unanticipated failures..

Reconfiguration takes place after a decision is made that it is required. An important element
of the Willow approach is the integration of information from sensing mechanisms within the
network (such as intrusion detection systems) and information from other sources (such as
1nte1hgence data). Since reconﬁgurauon could be used as a means of network attack, the 1nput
that is used in the Willow decision-making process is managed by a comprehenswe trust

mechamsm [2].

Summary of the Architecture

The fundamental structure of the Willow architecture is a control mechanzsm that is there to
deal with network changes. The individual schemes for deahng with different reconfiguration
scenarios might be different, but conceptually they are instances of a common control paradigm
that pervades the architecture. This common control loop, and the pnmary elements of the
architecture, are depicted in Figure 1. The control loop contains sensing, diagnosis, synthesis,
coordination, and actuation components to affect desired network maintenance. '

Fundamental to the implementation of the control loop are: (a) the use of formal languages for
the specification of control; (b) large-scale, wide-area communication via the publish-subscribe
paradigm; (c) reconfiguration coordination capability; and (d) homogeneous actuation across

heterogeneous environments.
The control loop. of Figure 1 begins with senszng of network state. Sensors can include reports

from applications, apphcat10n heartbeat momtors intrusion detection alarms, or any other means

Page 2

| - |
| RAPTOR : Nephele
. a
[_
: Administrative . WNetlngfk_ |
: orkflow:
— Workbench - Coordination
4 ! i ‘ ' : ‘ .Environmerit
. | :
Sensors I Other |
i |
___________ .
Synthesis & Diagnostics
Components
—SoftwareDock &

Fig. 1. The Willow architecture.

of measuring actual network properties. From sensing events mdependent dzagnoszs and

‘synthesis components build models of network state and determine required network state

changes. RAPTOR is a formal- specification driven diagnosis and synthesis system that receives
sensor events to analyze and respond with desired network changes, automatically and in bounded
time. The Administrative Workbench is an interactive application allowing system administrators
to remotely monitor application conditions and adjust application properties. Additional diagnosis
and synthesis components can be added by modification of the Willow specification input.
Synthesis components issue their intended network changes as workflow requests. Nephele is

a large-scale network workflow execution environment. It ovérsees coordination and arbitrates
resource usage between independently synthesized work requests. leferent workflows with
differing intentions from different diagnosis and synthesis components might conflict, and

Nephele maintains ordering of their operation to best meet the survivability goals of the
application domain. When workflows are allowed to activate, workflow events are received by
the Software Dock and result in local system state changes. The Software Dock infrastructure
provides a single interface for universal actuation at application nodes across enterpnse level

networks[3, 4, 5]. Actuation completes the control loop cycle.

All of the components. of the Willow architecture interact via the Slena publzsh-subscrzbe
communication system[l]. This allows efficient, scalable event-driven communication to Willow
components throughout large-scale networks. In turn, the components of Willow provide
efficient, scalable, well-defined, proactive and reactive network change capablhtles This

enhances network apphcatlon surv1vab111ty, securlty, and manageability.

Page3

Summary of a Case Study

A prototype Willow system has been developed that implements all the different aspects of
the architecture mentioned above. As part of an on-going feasibility study, this prototype
implementation has been used to execute a prototype 1mp1ementat10n of the Joint Battlespace
Infosphere (JBI) concept. ,

Instantiations of the JBI concept, once fully developed will provide advanced information
systems for military use. At the heart of the JBI concept is the notion of publish/subscribe
semantics in which different information sources publish their data to a network and those
interested in the information subscribe to those parts which they wish to see. The expectation is
that very large amounst of military information will be published to a JBI and large numbers of
consumers (commanders at all levels) will. tallor the information they receive by subscribing
appropriately.

Clearly a JBI will be an attractive target to an adversary for many reasons. Such a system
might be attacked in various ways by hackers or disabled by battle damage, physical terrorism,
software faults, and so on. It is essential, therefore, that a JBI be survivable, and the Willow

architecture is a candidate implementation platform.

We have developed a JBI implementation based on the Siena pubhsh/subscrlbe system that
includes several information-processing modules (known as fuselets) and synthetic publishers
and subscribers. All of the components of the system have been enbanced to allow them to
respond appropriately to reconfigration actions. In addition, the different elements of the
implementation have been extended deliberately with vulnerabilities so as to permlt
demonstration and evaluation of the reconfiguration capabilities of Willow. ‘

The JBI implementation operating on the Willow architecture has been subJected to a
preliminary evaluation by fault injection. The JBI system has been deployed to a test network
entirely automatically and shown to adopt new postures under operator control as desired. The
system has also been shown to reconfigure automatically when network faults were injected.

References : :
[1] A. Carzaniga, D.S. Rosenb]um, and A.L. Wolf, Design and Evaluation of a Wide-Area Event’ Not1ﬁcat1on

Service, ACM Transactions on Computer Systems, 19(3):332-383, Aug 2001.

[2] P. Devanbu, M. Gertz, C. Martel, and S. Stubblebine. Authentic Third-Party Data Pubhcatlon In Proceedmgs of
.the Fourteenth IFIP Working Conference on Database Security, August 2000. To appear. .

3] R.S. Hall, D.M. Heimbigner, A. van der Hoek, and A.L. Wolf. An Architecture for Post- Development'
Configuration Management in a Wide-Area Network. In Proceedmgs of the 1997 Intematmnal Conference on
Distributed Computing Systems, pages 269—278. IEEE Computer Soci-ety, May 1997.

[4] R.S. Hall, D.M.' Heimbigner, and A.L. Wolf. Evaluating Software Deployment Languages ‘and Schema. In
Proceedings of the 1998 International Conference on Software Maintenance, pages 177~ 185. IEEE Computer
Society, November 1998.

[5] R.S. Hall, D.M. Heimbigner, and A.L. Wolf. A Cooperatwe Approach to Support Software Dep]oyment Using .
the Software Dock. In Proceedings of the 1999 International Conference on Software Engineering, pages 174
183. Association for Computer Machinery, May 1999. ' ’

[6] J.C. Knight, K. Sullivan, M.C. Elder, and C. Wang. Survivability Architectures: Issues and Approaches. In
Proceedings - of the DARPA Information Survivability Conference and Exposition, pages 157-171, Los

. Alamitos, California, January 2000. IEEE Computer Society Press.

[7] J.C.Knight, M. C. Elder, Fault Tolerant Distributed Information Systems, International Symposium on Software
Reliability Engineering, Hong Kong (November 2001).

[8] J.C. Knight and K.J. Sullivan, On the Definition of Survivability, University of V1rg1n1a Department of

Computer Science, Technical Report CS-TR-33-00

Page 4

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL.28, NO.1,

JANUARY 2002

‘A Testbed for Configuration
Management Policy Programming

~ André van der- Hoek Member, IEEE, Antonio Carzaniga,
Dennis Heimbigner, Member, IEEE and Alexander L. Wolf, Member, IEEE Computer Soc:ety

Abstract—Even though the number and variety of available configuration management systems has grown rapidly in the past few
years, the need for new configuration management systems still remains. Driving this need are the emergence of situations requiring
highly specialized solutions, the demand for management of artifacts other than traditional source code and the exploration of entirely
new research questions in configuration management. Complicating the picture is the trend toward organizational structures that
involve personnel working at physically separate sites. We have developed a testbed to support the rapid development of configuration
management systems. The testbed separates configuration management repositories (i.e., the stores for versions of artifacts) from
configuration management policies (i.e., the procedures, according to which the versions are manipulated) by providing a generic

79

model of a distributed repository and an associated programmatic interface. Specific configuration management policies are -
programmed as unique extensions to the generic interface, while the underlying distributed repository is reused across different
policies. in this paper, we describe the repository model and its interface and present our experience in using a prototype of the
testbed, called NUCM, to lmplement a variety of configuration management systems. .

Index Terms—Configuration management, configuration management policies, distributed configuration management, policy

programmihg, peer-to-peer, version control.

1 INTRODUCTION

SINCE its beginnings in the early 1970s, the field of
configuration management (CM) has slowly but surely
evolved. The marketplace for CM products is now worth
well over one billion dollars per year [8]. More than one
hundred commercial CM systems, representing a wide
range of functionality, are currently available. While some
are simple clones of SCCS [41] and RCS [47], others have
pushed the state of the art quite considerably by offering a
full spectrum of functionality [14]. Most CM systems,
however, fall somewhere in between, each providing some
dnstmgulshmg combination of functionality.
Despite the variety of available systems, several
compelling reasons exist to continue the development of
new CM systems. First, in the current generation, the
basic functionality provided by a given CM system is
fixed; if specialized functionality is needed in a particular
situation (e.g., required compliance with company-wide
standards [40] or e-mail-based synchronization of work-
spaces [33]), it becomes difficult to provide. A second
reason is that existing CM systems tend to focus on the
management of source code; if other types of artifacts
need to' be managed and configured (e.g., Web sites [34],

o A. van der Hoek is with the Institute for Software Research, Department of
Information and Computer Science, University of Callforma, Irvine, CA
92697-3425. E-mail: andre@ics.uci.edu.

o A. Carzaniga, D. Heimbigner, and A.L.. Wolf are with the Software
Engineering Research Laboratory, Department of Computer Science,
University of Colorado, Boulder, CO 80309. ’

E-mail: {carzanig,dennis,alw}@cs.colorado.edu.

Manuscript received 22 Sept. 1998; revised 28 Mar. 2000; accepted 17 Jan.
2001.

Recommended for acceptance by W. Griswold.

For information on obtaining reprints of this article, please send e—mall to:
tse@computer.org, and reference IEEECS Log Number 107440.

software architectures [11], or legal databases [29]), only a
limited amount of support is available.- A third reason is
that existing CM systems are based on certain underlying
assumptions; if new approaches are developed that are in
conflict with some of these assumptions (e.g., the
approach based on feature logic [53]), little help is
available to implement them.

Already a daunting task in and of itself, the construction
of a CM system is further complicated by the fact that many
of today’s projects are carried out in a distributed fashion.
In these projects, multiple collaboratmg participants are
physically dispersed over a number of geographical
locations, sometimes even belonging to different compa-
nies. Not only does this influence the implementation of a
CM system in that it must operate in the context of a wide- -
area network, it also influences the basic design of a
CM system in that its built-in processes must be supportive
of distributed and probably decentralized collaboration.

We have developed a testbed to support the rapid
construction ‘of new, potentially distributed, CM systems.
The testbed embodies an architecture that separates
CM repositories, which are the stores for versions of software
artifacts and information about those artifacts, from
CM policies, which are the specific procedures for creating,
evolving, and assembling versions of artifacts maintained in
the repositories. Key to this architecture is the definition of
an abstraction layer that consists of a generic model of a
distributed CM repository and a programmatic interface for
implementing, on top of the repository, specific CM policies.

The generic model consists of five components covering
the major aspects of a configuration management reposi-
tory, namely, storage, distribution, haming, access, and
attributes. Similarly, the programmatic interface consists of

0098-5589/02/$17.00 © 2002 IEEE

80

seven orthogonal categories of functions, including access,
versioning, querying, and distribution. CM policies are
programmed as extensions to the generic interface, while
the underlying distributed repository is reused across
different policies. Structured this way, the testbed supports
direct and flexible experimentation with new CM policies.

Overall, the design of the abstraction layer was guided

by the following high-level objectives:

e The abstraction layer should be policy independent. In
order for the abstraction layer to support the
construction of a wide variety of CM policies, the
repository model and programmatic interface

should not themselves contain any restrictive policy

decisions. For example, if the repository model only

provided a facility to store versions of artifacts as a

traditional version tree, it would be very difficult to
implement the more advanced change-set policy
[35]. Similarly, if the functions in the programmatic
interface automatically created a new version of an
artifact whenever one of its constituent parts is
modified, CM policies in which the evolution of an
artifact is explicitly managed by a user would, once
again, be difficult—if not impossible—to implement.

o The abstraction layer should support distributed opera-

. tion. As proven by the considerable amount of
research on the issue [2], [10], [13], [25], providing
proper support for the distributed operation of a
CM system is a complicated task. Therefore, it is
desirable to incorporate support for distribution as
an intrinsic property of the repository model and
programmatic interface. In particular, the repository
model should be able to support a variety of
distribution mechanisms (such as peer-to-peer or
master-slave) and the programmatic interface
should permit the control of the physmal placement
of artifacts.

It is important, however, that support for dis-
tribution be isolated from other facets of the
abstraction. In particular, the low-level details of
the distribution aspects of building a CM system
(e.g., connection protocols, communication proto-
cols, and time outs) should be isolated from the
policy programming aspects by placing those details
within the implementation of the repository model.
Further, the distribution aspects of relevance to a
CM policy (e.g., access to remote repositories and
placement of artifacts) should be isolated from the
versioning, querying, and other functional categories
of CM policy programming. More specifically, the
functions in the interface should appear the same
regardless. of the physical location of the artifacts
they manipulate.

o The abstraction layer should support the management of
arbitrary kinds of artifacts. As previously mentioned,
CM systems are increasingly needed to manage
artifacts other than source code. To allow such
specialized CM systems to be constructed, neither
the repository model nor the programmatic interface
should make assumptions about the kinds of
artifacts that are being manipulated. For example,

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO. 1,

JANUARY 2002

it is well known that certain algorithms for comput-
.ing the difference between two versions of an artifact
work better for textual data, such as documents and
program code, than for binary data, such as images
or program executables [27]. Incorporating such a
biased differencing algorithm into the abstraction
would violate its ability to properly handle different
kinds of artifacts.

o The abstraction layer should be able to support traditional
CM functionality. Even though the abstraction layer
is meant to support the construction of new

'CM policies, it should be obvious that it also must |
be able to support the construction of existing
CM policies. If it could not support the latter, the
architectural separation of CM repositories from
CM policies results in a loss of functionality and it
would be likely that certain variants of existing
CM policies could not be implemented.

NUCM (Network-Unified Configuration Management)
is our prototype implementation of the testbed. It has been

_key to the development of several innovative CM systems,
including DVS [9] and SRM [49]. As a prototype, NUCM

was not designed to exhibit the robustness or completeness
that one would expect of a commercial implementation of
the abstraction layer. Similarly, the CM systems we built
using NUCM were not designed to be particularly robust or
complete (although two of them are currently in everyday
use). Instead, our focus was on being able to evaluate the
utility of the abstraction layer in supporting CM policy
programming.

Fig. 1 illustrates the architecture of NUCM in terrns of
an example repository structure. A CM system that uses a

"NUCM repository consists of two parts: the generic

NUCM client and a particular CM policy. The generic
NUCM dlient implements the programmatic interface and,
thus, is the foundation upon which particular CM policies
are implemented. This is illustrated in Fig. 1, where two
CM policies, namely, policy X and policy Y, both use the
generic NUCM client to store and version the artifacts that
they manage. In general, a single repository can store
artifacts that are managed by different CM policies, as
long as the policies partition the artifacts in separate name
spaces within the repository. If different policies operate
on the same artifacts, it is the responsibility of the
CM policies to resolve any conflicts.

The figure also shows that NUCM provides the concept
of a logical repository that is made up of physical
repositories. . The artifacts in each physical repository are
managed by a NUCM server. Combined, the NUCM servers
for the physical repositories provide access to the complete
logical repository. In particular, when artifacts that reside in
a different physical repository than the one managed by one
of the NUCM servers are requested, that NUCM server will
communicate with the other ones to provide access to.the
artifact.

This paper presents the design of our abstraction layer
for CM policy programming and our experiences to date in
using NUCM to evaluate the utility of the abstraction layer.
We begin in Section 2 by discussing the generic repository
model. Section 3 presents the programmatic interface

e

Iy

VAN DER HOEK ET AL.: A TESTBED FOR CONFIGURATION MANAGEMENT POLICY PROGRAMMING 81

/ CMpolicyX Jf

NUCM client

[/ CM policy X ?

/ NucMclent ff

Fig. 1. NUCM architecture.

through which the artifacts are stored and manipulated.,

Section 4 describes how we have used NUCM to construct a

-number of rather different CM systems. Related work is

discussed in Section 5 and we conclude with a brief look at
future work in Section 6.

. 2 A GeNeERic CM ReposITORY MODEL

The first part of our abstraction layer is the generic
repository model. It consists of five components: a storage

model, a distribution model, a naming model, an access °

model, and an attribute model. The storage model defines
the mechanisms for versioning and grouping artifacts, the
distribution model defines the different ways in which
artifacts can be arranged across different sites, the naming
model defines the way individual artifacts can be identified
in a distributed repository, the access model defines the
primary method of access to artifacts stored in a distributed

repository, and the attribute model defines how attributes

can be used to associate metadata with artifacts.

A key characteristic of the generic repository model is
that, even though specifically designed to support the
versioning, grouping, distribution, and other "aspects of
artifacts, it does not enforce any particular policy for doing
so. For instance, while the repository model provides the
capability of storing multiple versions of an artifact, it does
not impose any specific relationships among those versions.
Similarly, the repository model facilitates the storage of
different artifacts in different repositories, but it does not
enforce a particular organization of the artifacts among the
different repositories. In both these and other cases of
separation of CM repository from CM policy, it is up to the
CM policy programmer to use the interface functions
discussed in Section 3 to manipulate the CM repository
into the desired behavior.

- | oM policy X
~ NUCM client

.

CM policy Y
NUCM client

2.1 Storage Model

The basis for the storage model is a directed graph with two
kinds of nodes: atoms and collections. An atom is a leaf node
in a graph and represents a monolithic entity that has no
substructure visible to the storage model. Typical atoms

‘include source files or sections of a document. Contrary to

atoms, the structure of collections is known to the storage
model: Collections are the basic mechanism used to group
atoms into named sets. For example, a collection might
represent a program that consists of a set of source files.
Alternatively, a collection could represent a document that
is composed out of a number of sections.

Collections can be used recursively and can themselves
be part of larger, higher-level collections. For instance, a
collection that represents a system release could consist of a
collection for the source code of the system and a collection
for the documentation of .the system. Membership of a
collection can, of course, be mixed: A single collection can
contain both atoms and collections. A collection that
represents a document could have as its members short -
sections that are captured as atoms, as well as longer,
further subdivided sections that are captured as collections.

Fig. 2 illustrates the basic concepts of atoms, collections,
and their member relationships. The figure shows a portion
of a repository for the C source code of two hypothetical
software systems, WordProcessor and DrawingEditor.
Collections are shown as ovals, atoms as rectangles, and
member relationships as arrows. Both software systems not
only contain a separate subsystem, as demonstrated by the
collections Spe'liChecker and Menu, respectively, but
they also share a collection called GUI-1ib. In turn, these
lower-level collections snnply contain atoms, which, in this
example, represent the source files that 1mplement both
systems.

BEST AVAILABLE Copy

82 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL.28, NO.1,

“WordProcessor

‘SpellCheoker GUI-lib

Spell.c ‘Window.c

Fig. 2. Example repository contents without versions.

WordProtessor

) SpdﬂQh‘ecker GUI-ib

Fig. 3. Example repository contents with versions.

In contrast to other approaches, such as CME [25] or
ScmEngine [10], the storage model does not impose any
semantic relationship among the Versions of an artifact. In
particular, the tree-structured revision and variant rela-
tionships that are found in many—but by no means
all—CM systems are not present in the directed versioned
graph. Instead, the graph simply provides a unique
number with which to identify each version. This allows
a CM system to employ its own type of semantic
relationships among: vérsions and, hence, increases the
generality of the repository.

The decision not to enforce semantic relationships
among the versions of an artifact is based on the more
general observation that many such relationships exist.
Some examples include derived-from, is-composed-of, is-part-

of, depends-on, and includes. Different CM systems support -

different subsets of these and other relationships. Therefore,
rather than directly maintaining only an arbitrary subset of
relationships, the storage. model is generic in that it
facilitates the creation and maintenance of arbitrary,
policy-programmed relationships. It does so through the
use of collections to group artifacts and the use of attributes
to label versions of artifacts. While this may at first seem
inconvenient, since a policy programmer is now expected to
implement relationships, the ablhty to reuse these imple-
mentations mitigates the inconvenience. For example, the
policy code that defines the version-tree relationship of the

JANUARY 2002

- DrawingEditor

GUI-lib

?hshUp.c

Frame;c PullDown.c

DrawingEditor

‘GUI-lib

WebDAV example in Section 4 reuses much of the policy
code of an earlier CM system. This earlier CM:system also
uses the version-tree relationship and was built using
NUCM [50].

"~ Fig. 3 shows how the directed graph of artlfacts
presented in Fig. 2 is enhanced with versions to form a
versioned directed graph. Stacks of ovals and rectangles .
represent sets of versions of collections and atoms, respec-
tively. Numbers indicate the relative age of versions: the
higher the number, the younger the version.! Dashed

. arrows represent the member relationships of older ver-

sions of collections. Observe that membership of collections
is on a per-version basis. For example, both version 1 and
version 2 of the collection Menu contain version 1 of the
atom PushUp. ¢, but version 2 contains an additional atom,
namely, version 2 of the atom PullDown.c.

2.2 Distribution Model -

The distribution model of the abstraction layer comple-
ments the functionality of the storage model. Whereas the
storage model specifies how artifacts can be grouped,

" versioned, and related through the versioned directed

graph, the distribution model precisely defines how the
versioned directed graph can be stored in a distributed

" 1..As further discussed in Section 3, the “age” of versions merely
indicates their relative order of creation. In fact, the contents of the versxons
may, depending on the policy, change over time.

e

83

PullDowir.c) P&sht}p,@
\

ROTTERDAM

Fig. 4. Example repository contents of Fig. 3 as distributed over three different sites.

fashion. In particular, the distribution model defines two
types of repositories: a physical repository and a logical
repository. A physical repository is the actual store for some
part of a versioned directed graph at a particular site. It
contains, for a number of artlfacts, the _contents of the
versions.

A logical repository is a group of one or more physmal-

repositories that together store.a complete versioned
directed graph of artifacts. Because the distribution model
is pohcy independent, a requirement for a’logical reposi-
tory is that it has to be able to support the modeling of a
variety of distributed CM policies.’ To do so, physical
repositories that are part of a logical repository collaborate
in a peer-to-peer fashion, with no centralized “master”
repository controlling the distribution of artifacts. Instead,
distribution is controlled at the individual artifact level:
Collections not only maintain the names of their member
artifacts, they also track the physical repository in which
each member artifact is stored. Thus, member relationships
may span the geographical boundaries that exist among
physical repositories.-.

The physical location of artifacts in a logical repository is
irrelevant. Artifacts can be obtained from any physical
repository that is part of the logical repository, whether the
physical repository resides on a local disk, on the local
network, or on the other side of the world. Based on the fact
that collections keep track of the physical repositories in

which their member artifacts reside, requests for member

artifacts that are stored at a different physical repository
than that of the collection are forwarded. Thus, physical
repositories act as both clients and servers, requesting
services from each other and fulfilling service requests for
each other.

Fig. 4 presents these concepts with an example distributed
repository. Shown is the repository of Fig. 3 as distributed
over three different sites, namely, Boulder, Milano, and
Rotterdam. Each of these sites maintains a physical

‘repository with artifacts. The physical repository located

in Boulder maintains the collection WordProcessor, the
physical repository in Milano maintains the collection
DrawingEditor, and the physical repository in Rotterdam
maintains the collection GUI-1ib. Because the projects

“in Boulder and Milano rely on the use of the collection

GUI-1ib, their physical repositories are connected with the
physical repository in Rotterdam. Two logical repositories
are formed: The physical repositories in Boulder and
Rotterdam combine into one logical repository that presents
a complete view of the collection WordProcessor and its
constituent artifacts and the physical repositories in Milano
and Rotterdam combine into one logical repository that ‘
manages the complete system DrawingEditor.)
It is important to note that it is the simple presence of
member relationships among artifacts in different physical
repositories that creates logical repositories. Without the
membership of version 2 of the collection GUI-1ib within
version 1 of the collection WordProcessor, for example,
the logical repository formed by the physical repositories in

‘Boulder and Rotterdam would not exist. Instead, the

physical repository of Boulder would bea logical rep051tory
all by itself. ’

The . distribution model is versatile: Artifacts can be
distributed among physical repositories as desired, a single
physical repository can be part of multiple logical reposi-
tories, and logical repositories can themselves be part of
other logical repositories. This flexibility, combined with a

84

peer-to-peer architecture, allows many different distribu-
tion schemes to be mapped onto the distribution model. As
further demonstrated elsewhere [48], these schemes include
the following:

e asingle physical repository that is accessed by many
CM clients, thus creating a client-server system like
DRCS [36];

e several physical repositories that represent a hier-
archy of distributed workspaces in which changes
in lower level workspaces are gradually promoted
up the hierarchy, thus duplicating the essence of the
functionality of such systems as NSE [19] and
PCMS [46]; and '

e a set of physical repositories that act as replicas, in
which the contents of the replicas are periodically
synchronized by a merging algorithm, a configura-
tion similar to ClearCase Multisite [2].

These and other approaches to distributed CM can be built
using the peer-to-peer architecture. While it is true that a
solution based on our generic distribution model might not
perform as optimally as a specialized solution for a
particular CM policy, the flexibility afforded by the
repository model allows experimentation with new dis-
tribuﬁon policies. Once proven to be of use, the implemen-
tation of an experimental policy can be optimized for
performance.

2.3 Naming Model ,
An important issue in distributed systems development is
naming. Rather than employing a global naming scheme in
which each artifact is assigned a single, unique identifier,
the naming model is based on a hierarchical naming
scheme. The use of hierarchical naming provides three
important advantages. First, it naturally fits the hierarchy
that is formed by the directed graph of artifacts as defined
by the storage model since each part of a name incremen-
tally indicates which member of a collection is chosen when
traversing the directed graph. Second, hierarchical naming
provides an advantage of scale by avoiding the need for
complicated algorithms that create globally unique identi-
fiers. Lastly, it follows the generally accepted practice of
decoupling the name of an artifact from its physical
location. In particular, since member relationships can span
multiple geographical locations, a hierarchical name simply

follows these relations without knowing the actual location

of the artifact it designates.

By itself, hierarchical naming is not sufficient. Still open
is the choice as to whether each part of a hierarchical name
is maintained by an artifact or by its containing collection.
To allow a single artifact to exist under different names in
different collections (an important facility in current
CM systems), the naming model prescribes the latter:
Names of artifacts are maintained md1v1dua11y by the
collections in which the artifact is a member.

The hierarchical name of an artifact adheres to the

following template:

//physical-repository/<namel:versionl>
[</name[:version]>...]

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO.1,

JANUARY 2002

Thus, names in the abstraction layer can be viewed as URLs
that are extended with version qualifiers. Version qualifiers
provide a means to specify particular versions of artifacts.
Because the storage model allows a single version of an
artifact to be a member of multiple (versions of multiple)
collections, this kind of naming scheme allows an artifact to
have multiple names. For example, assuming the logical
repository shown in Fig. 4, the following four names are all
equally valid as the fully qualified name of version 1 of the
atom PushUp.c:

//Milano/DrawingEditor:1/Menu:1/PushUp.c
//Milano/DrawingEditor: 1/Menu:2/PushUp.c:
//Milano/DrawingEditor:2/Menu:1/PushUp.c

//Milano/DrawingEditor:2/Menu:2/PushUp.c:

For convenience, the use of version qualifiers is optional. If
a version qualifier is not included, then the interpretation of
the name defaults to the version of the artifact that is the
actual member of the containing collection. For example,
the name '

Bl e

/ /Mi 1aho/DrawingEditor :2/Menu/ PushUp .c

also refers to version 1 of atom PushUp. ¢ since version 2 of
collection Menu is the member of version 2 of collection
DrawingEditor and version 1 of atom PushUp.c is the
member of version 2 of collection Menu. Thus, it defaults to
the following fully qualified name: ‘

//Milano/DrawingEditor:2 /Menu 12 /?ushUp .c:1

Similariy, because version 2 of collection DrawingEditor
is the member of the rep051tory in Milano, the following
two names also refer to version 1 of atom PushUp c:

//Milano /Draw:.ngEdltor/Menu :2/PushUp.c
//Milano/DrawingEditor/Menu/PushUp.c

24 Access Model

The fact that artifacts reside in a loglcal rep051tory does not:
necessarily imply that they are directly manipulated there.

In fact, it is common practice to build a CM system around
the notion of a workspace. A workspace materializes a
subset of artifacts in the file system. When designing a
CM system, the use of a workspace provides three

‘advantages over direct manipulation. First, it provides an

insulated work area in which artifacts can be manipulated
without being influenced by the work of others. Second, a
workspace provides.a form of caching, typically residing
much closer in proximity to the originator of changes than

the physical repository. Finally, a workspace is unobtrusive -

in that it provides existing applications with access: to
versioned artifacts without the need to modify those
applications to understand the details of the storage and
versioning mechanisms that are used. .

For these reasons, the access model prescribes the use
of workspaces to access artifacts in a logical repository.
Each workspace represents a particular’ version of a
particular collection. The structure of the workspace
follows the structure of the file system. In particular,
collections materialize as directories, lower-level collec-
tions materialize as subdirectories, and atoms materialize
as files. For example, version 2 of the collection

R]

VAN DER HOEK ET AL.: A TESTBED FOR CONFIGURATION MANAGEMENT POLICY PROGRAMMING : 85

DrawingEditor as presented in Fig. 4 would have the
following directory structure when materialized into a
workspace on a UNIX file system.

. /DrawingEditor/GUI-1ib/
/Menu/PullDown.c
/PushUp.c

ClearCase [3] manages workspaces in the repository by
employing a’ translucent file system in which operating
system calls, such as open, read, and write, are trapped
and interpreted by the repository. In contrast, workspaces
in our access model follow the model that is used by
DRCS [36] and DCVS [24], where materialized artifacts
are actual copies in the file system of the artifacts in'the
repository. The advantage is that proprietary replacements
for low-level operating system functions do not have to be
created (as with ClearCase) and that less network traffic is

incurred.

In traditional CM systems, the user of a workspace is a

human. The user of the workspace in our access model,
however, is primarily intended to be a CM system that, in
turn, provides tailored styles of access to their ultimate
human users. This is illustrated in Fig. 5. Three layers, each
containing a different representation of the artifacts, can be
identified. The bottom layer is the repository that contains
all versions of all artifacts. Some of these artifacts will be
materialized into a workspace, which is illustrated by the
middle layer. The materialized artifacts might be trans-
formed by a CM policy for presentation to a human user,
resulting in the top layer. Note that the bottom two layers
are standard and managed internally beneath the abstrac-
tion layer. The top layer, however, can be of any shape or
form, since it is determined by the CM pohcy program.

2.5 Attribute Model

To facilitate the storage of metadata in a rep051tory, the
repository model incorporates a simple attribute model. An
attribute in this model is an untyped name/value pair that
can be dynamically associated with a particular version of

Version =1.0

Version =1.1

Version=1.2

ChangeComment =

-user manipulation

Uservie EmumN|N

S Al

transformation by CM palicy X

A

‘ Workspace

...NVoﬁiProcessorZSpellChecker/Spe]l.c :
JGUI-Iib/

workspace materialization

Repository

Fig. 5. Access model.

an artifact. Each such version can have its own unique set of
attributes, and this set can change over time. The CM policy
determines both a naming scheme for the attributes and a -
set of values that the attributes may assume.

An example is provided in, Fig. 6, which shows the’
attributes that have been associated with the various
versions of the atom Spell.c. The CM policy managing -
these versions has labeled them all with the attributes
Author, Version, and ChangeComment. Furthermore, if
a new version of an artifact fixes a previously identified
bug, that version will be labeled with the attribute
BugReport, ‘which contains the number of the bug
report that describes -the bug that is resolved. Finally, if
a version of an artifact is locked, the attribute Lock is set

Author = Andre van der Hoek

ChangeCommerit = lnmal revision

Author = Andre van déer Hoek

Added support to ignore abbreviations

Author = Aiexander L. Wolf

Version =1.1.1.0

ChangeComment = Fixed faulty routine for checklng plural words
BugReport = #17

Author = Andre van def ‘Hoek

ChangeComthent = Added support for interactive speIIcheckmg

Locki= andre@cs colorado.edu

Fig. 6. Example attributes associated with the atom Spell.c.

86

to contain the e-mail address of the person who has
placed the lock. Note that some attributes contain values
that are assigned by the CM policy itself (e.g., Author,
Version, and Lock), whereas other attributes contain
values that are supplied by users of the CM policy (e.g.,
BugReport and ChangeComment).

3 REPOSITORY INTERFACE

The second component of the abstraction layer defined by
the testbed is the programmatlc interface through which
artifacts that are stored in a repository can be manipulated
by CM policies. The complete interface consists of seven
categories of functionality. These categories, listed in Table 1
with the functions they contain, are the following: access
functions, which provide access to artifacts in a repository
by materializing them in a workspace; versioning functions,
which manage the way artifacts evolve into new versions;
collection functions, which manage the membership of
collections; distribution functions, which control the place-
ment of artifacts in specific physical repositories; a deletion
function, which allows a CM policy to remove artifacts from
a repository; query functions, which provide a CM policy
with various kinds of information about the state of artifacts
in a repository or workspace; and attribute functions, which
manage the association of attributes with versions of
artifacts. , ‘

A CM policy is built by programming against the
interface and using combinations of interface functions to
. implement the particular functionality néeded. Because a
wide range of CM policies has to be supported, the interface
functions—much like the various submodels in the reposi-
tory model—do not impose any particular CM policy.
Instead, they provide the mechanisms for CM systems to
implement specific policies. While the particular semantics
of the interface functions might therefore seem odd from
the perspective of a human user, those same semantics are
invaluable to a CM policy programmer.

An important characteristic of the programmatic inter-
face is the orthogonality among the various functional
categories. For example, the distribution functions are the

only functions concerned with the distributed nature of a

repository. The other functions are not influenced by the
fact that artifacts are stored in different locations. Their
behavior is the same, regardless of whether the artifacts are
managed by a local repository or a remote one. Similarly,
the collection functions are the only functions that recognize
the special nature of collections. The other functions in the
programmatic interface behave the same, irrespective of
whether they operate on atoms or collections.

It should be noted that the functionality offered by each
individual interface function is rather limited. At first, this
seems contradictory to the goal of providing a high-level
interface for configuration management policy program-
ming. However, because of the limited functionality, each

function can be defined with precise semantics. Not only

does that generalize the applicability of the interface
functions, it also allows the rapid construction of particular
CM policies through the composition of sets of interface
functions. In Section 4, we present some of the CM policies
that we have constructed this way. Below, we introduce,
per category, the individual interface functions that

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL.28, NO. 1,

JANUARY 2002

constitute the programmatic interface to the generic
repository model.

3.1 Access Functions

Access to the artifacts in a repository is, as discussed in
Section 2.4, obtained through a workspace in which artifacts
are materialized upon request. Once the artifacts are
materialized, other interface functions become available to
manipulate them. In particular, versioning functions can be -
used to store new instances of artifacts, and collection
functions can be used to manipulate the membership of
collections.

The access functions in the programmahc interface are
nc_open and nc_close. The function nc_open provides
access to a particular version of an artifact by materializ-
ing it in a workspace. Atoms are materialized as files,
collections as directories. Each use of the function
nc_open materializes a single artifact. A workspace, then,
has to be constructed in an incremental fashion. This
mechanism allows 2 CM system to populate a workspace
with only the artifacts that it needs. The function
nc_close is used to remove artifacts from a workspace.
The function operates in a recursive manner: When a
collection is closed, all the artifacts that it contains are
removed from the workspace as well.

3.2 Versioning Functions

Once an artifact has been opened in a workspace, the
following versioning functions become available to create
and store new versions of the artifact:

nc_initiatechange,
nc_abortchange,
nc_commitchange, and

nc comm1t:changeandreplace

Through the functionnc_ini tiatechange,a CM policy

-informs a workspace of its intention to make a change to an
- atom or a collection. In response, permission is granted to

change the artifactin the workspace. If the artifact is an atom,
it can be manipulated by any user program since its contents
are not interpreted by the model or interface. A collection, on
the other hand, can only be manipulated through the use of
collection functions because those functions preserve its
special nature (see Section 3.3).

Permission to change an artifact in one workspace does
not preclude that artifact from being changed simulta-
neously in another workspace. In particular, the function
nc_initiatechange does not lock an artifact. If a locking
protocol is desired, then the attribute functions described in
Section 3.7 can be used to construct that protocol. This

- orthogonality of locking and versioning permits the devel-

opment of CM policies that range from the optimistic, in
which artifacts are not locked and changes are merged

‘when conflicts arise, to the pessimistic, in which artifacts are

locked to avoid conflicts.

The function nc_abortchange abandons an intended
change to an artifact. It reverts the materialized state of the
artifact back to the state that it was in before the function
nc_initiatechange wasinvoked. Annc_abortchange
performed on a collection can only succeed if no artifacts
that are part of the collection are currently in a state that
allows them to be changed. This forces the CM system either

R

Ead
Py

VAN DER HOEK ET AL.: A TESTBED FOR CONFIGURATION MANAGEMENT POLICY PROGRAMMING 87

TABLE 1
Programmatic Interface Functions

[Category [Function

Description ‘ ' |

Access nc_open
nc_close

Materializes an artifact version into a workspace.
Removes an artifact version from a workspace.

Versioning nc_initiatechange
nc.abortchange

nc_commitchange
nc_commitchangeandreplace

Allows an artifact version in a workspace to be
modified.

Returns an artifact version in a workspace to the
state it was in before it was initiated for change.
Stores a new version of an artifact in a repository.
Overwrites the current version of an artifact in
a repository.

Collection nc_add

nc_remove
nc_rename
nc.replaceversion

‘nc_copy

nc.list

| Renames an artifact within a collection.

Adds an artifact version to a collection.
Removes an artifact version from a collection.

Replaces the version of an artifact within a col-
lection.

Copies the versions of an artifact and adds a ver-
sion of the new artifact to a collection.
Determines the member artlfact versions of a col-
lection.

Distribution | nc_setmyserver

Sets the default physwal repository in which new
artifacts will be stored.

nc_existsversion

‘nc_isinitiated

nc_getlocation Determines the physical rep051tory that contains
the versions of an artifact.
nc_move Moves an artifact and its versions from one phys-
ical repository to another.
Deletion nc_destroyversion Physically removes an artifact version from a
' repository. :
Query nc_gettype Determines the kind of an artifact.
nc_version Determines the current version of an artifact.
nc_lastversion Determines the latest version of an artifact.in a

.initiated for change in a workspace.

repository.

Determines whether a version of an artlfact ex-
ists in a repository. .
Determines whether an artifact version has been

Determines whether an artifact version has been

nc_getattributevalue
nc.removeattribute

nc_selectversions

nc_isopen
_ ‘ | materialized into a workspace.
Attribute nc_testandsetattribute Associates an attribute and its value with an ar-
' tifact version (if the attribute does not yet exist).
nc_setattribute Associates an attribute and its value with an ar-

tifact version (whether or not the attribute ex-
ists). : :
Determines the value of an a.ttrlbute of an arti-
fact version. .
Disassociates an attnbute from an artlfact ver-
sion.

Determines the set of versions of an artifact for-
which an attribute has a certain value.

to commit any changes or to abandon them, thereby

avoiding unintentional loss of changes.
To store the changes that have been made to an

artifact, two alternative functions can be used. The first,
nc_commitchange, commits the changes by storing a

new version of the artifact in the repository. It is the only
function in the programmatic interféce that actually
creates new versions of artifacts. None of the other
functions have this capability, neither directly nor as a
side effect. The second function used to store changes to

88

GUI-IIb

Wlp&ow.c Frame.c

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL.28, NO.1,

JANUARY 2002

GUI-ib

Wlndéw.‘c Frame.s

~ GUI-lb

W"“WWC
palp

\

~ BEST AVAILABLE COPY

Fig. 7. Progressive states of an example collection. ’

artifacts is nc_commitchangeandreplace. As its name
implies, this function is similar in behavior to the function
nc_commitchange, but instead of creating a new version
of the artifact, it overwrites the contents of the version
that was initiated for change. Both functions, in addition
to storing the new contents of the artifact in the
repository, also revoke the permission to make further
changes to the artifact in the workspace. Once again,
locking is an orthogonal concern that is managed with a
different category of functions. Therefore, neither function
releases any locks that may be held.

The availability of these alternative storage functions
allows a CM policy programmer to choose whether
particular changes lead to new versions of artifacts or not.
This is an especially important decision in the case of
collections. Whereas some CM policies prescribe that any
change to a member artifact leads to a new version of ‘the
collection (e.g., Poem [30] or CoED [6]), other CM policies
only version collections when the actual structure of the
collection (i.e., its artifact membership) has changed (e.g:,
ShapeTools [31] or ClearCase [3]). Since this is a policy
decision, the programmatic interface facilitates both cases.
To model the first case, the function nc_commitchange is
used on the collection, whereas the latter case requires the
use of the function nc_commitchangeandreplace.
Given that an artifact can be a member of multiple
collections, a CM policy could even choose to use a
different approach for each collection. -

To illustrate the versiening functions, suppose we have a

repository containing the artifacts depicted in Fig. 7a.
‘Assume further that, u'sing the function nc_open, a

workspace has been created that contains version 2 of the
artifact GUI-1ib and its containing artifacts. To be able
to modify the atom Window.c in the workspace, we
invoke the function nc_initiatechange. Once the
desired changes have been made, we use the function
nc_commitchange to store a new version of the atom
Window. c in the repository. The result is shown in Fig. 7b.
The repository now contains three versions of the atom
Window.c, but note that the collection GUI-1lib has
not changed since we did not invoke the function
nc_initiatechange on that collection. Had we used
the function nc_commitchangeandreplace. instead of
the function nc_commitchange, no new version would
have been created for the artifact Window.c. In fact, the
structure of the repository would still have looked like the .
one of Fig. 7a, even though the actual contents of version 2
of the atom Window.c would have changed.

3.3 Collection Functions

Similar to the way an editor can be used to change an atom
in a workspace, collections need to be changed via some
kind of mechanism. Because collections have special
semantics, it would be unwise to allow them to be edited
directly. Therefore, the programmatic interface contains a-
number of functions that preserve the semantics of
collections while updating their contents. These functions

e

1

VAN DER HOEK ET AL.: A TESTBED FOR CONFIGURATION MANAGEMENT POLICY PROGRAMMING - . 89

are the following: nc_add, nc_remove, nc_rename,
nc_replaceversion, nc_copy, and nc_list. An
important aspect of these functions . is that they do not
directly modify collections in the repository. Instead, they

can -only modify ‘collections that have been materialized-

(and initiated for change) in a workspace. To promote these
changes to the repository, the versioning functions
described in the previous section must be used. This
scheme allows many changes to a single collection to be
grouped into a single change in the repository.

The functions nc_add and nc_remove behave as
expected, adding and removing a version of an artifact to
and from a collection, respectively. The function nc_add
can add either a new or an.existing artifact to a collection.
The addition of a new artifact will simply store its contents
in the repository. The addition of an existing artifact, on the
other hand, will result in an-artifact that is shared by
multiple collections and for which a single version history is
maintained (such as the collection GUI-1ib in Fig. 4). If,
instead of a shared version history, a separate version
history is desired, then the fuinction nc_copy must be used
in place of the function nc_add. A distinctly new artifact
will be created in the repository. The new artifact will
contain the same version history as the artifact that was
copied, but the new artifact evolves separately.

A feature that has been difficult to provide in CM systems
is the ability to rename artifacts. The testbed solves this

problem by providing, directly in its programmatlc inter-

face, the function nc_rename. Because an artifact is only
renamed within a single collection at a time, it is possible for
an artifact to exist under different names in different
collections. This is an important feature of the programmatic
interface since it allows an artifact to evolve without
compromising its naming history.

The function nc_replaceversion complements the
other collection functions because it operates in the version
dimension as opposed to the naming dimension. Its

behavior is simple: It changes the member version of an

artifact in a collection to another version. A situation for
which this functionality is especially useful is when a
CM policy programmer would like to provide an “undo”
facility. For example, the facility can be used to replace a
newer version of an artifact in a collection with an older one.

The function nc_list rounds out the collection func- .

tions. It returns a list of the names and versions of the
artifacts that are members of a collection. This functionality
is useful in building a CM system that, for example,
presents a user with the differences between two versions of
a collection, recursively opens a workspace, or simply
allows a user to dynamically select which artifacts to lock or
check out.

The set of collection functions is complete. If we consider
the artifacts that are members of a collection to be organized
in a two-dimensional space defined by name and version,

~ all primitive functionality is provided. A name-version pair

can be added, a name-version pair can be removed, a name
is allowed to change, and a version is allowed to change.
Despite the rather primitive functionality provided by each
individual function, the complete set of collection functions
allows for the rapid construction of higher-level, more

powerful functions. For example, a function that replaces,
under the same name, one atom with another, can be
constructed as a sequence of nc_remove, nc_add, and
nc_rename.

To illustrate the collection functions, we continue the
example of Fig. 7b. Assume that all artifacts are still open in
the workspace. To manipulate the collection GUI-1ib, the
function nc_initiatechange is first used to gain proper
permission. Then, to update the atom Window . c to its latest
version, the function nc_replaceversion is applied. In
addition, to provide a panel as opposed to a frame in the
collection GUI-1ib, the function nc_remove is used to
remove the atom Frame . c and the function nc_add is used -
to add the atom Panel . c. These changes are transferred to
the repository using the function nc_commitchange. As a
result, the repository looks as shown in Fig. 7c. A new
version of the collection GUI-1ib has been created that
reflects the new membership. In addition, because we used
the function nc_commitchange instead of the function
nc_cimmitchangeandreplace, the old version of the
collection is still available. This means that, if the function
né_list is used on version 2 of the collection GUI-1ib,
then version 2 of the atom Window. ¢ and version 2 of the
atom Frame.c are listed as the collection’ members,
whereas, if the function nc_list is used on version 3 of
the collection, then version 3 of atom Window.c and
verswn 1 of atom Panel.c are listed as members

3.4 Distribution Functlons : .
An imiportant aspect of the distribution model discussed in
Section 2.2 is that it isolates distribution. This is reflected in
the semantics of the various interface functions since the
functions behave the same whether artifacts are stored
locally or remotely. On the other hand, sometimes a need
exists for control over the location of artifacts. Users of
systems that completely hide disttibution often encounter
performance difficulties related to the physical placement of
data, To counter this problem, the programmatic interface
contains functions that allow a CM system to determine and
change the physical location of artifacts within a logical

repository.

The first function, nc_setmyserver, spec1fxes the
default physical repository to which newly created artifacts .
are added. New artifacts can be added to any physical
repository since it is not required that they are added to the
same physical repository as the one in which their parent
collection resides. When a new artifact is added to a
different repository, a connection is made between that

" repository and the repository in which the parent collection-

is located. This connection is the bridge that forms the
logical repository spanning the two physical repositories.
To determine the actual location of an artifact, the
function nc_getlocation is used. It returns the physical
repository in which an artifact is stored. This information
can, in turn, be used by the function nc_; move to collocate
artifacts that are regularly used together or to move artifacts
to those physical repositories that are closer in proximity to
the workspaces in which they are manipulated. To comply
with the requirement set forth by-the distribution model

that all versions of an artifact are located in a single physical

90

repository, the function nc_move moves the complete
version history of an artifact from one physical repository
to another.

3.5 Deletion Function
Since it violates the basic premise of always having a precise
history of all changes to all artifacts, deleting (versions of)
artifacts from a repository is an uncommon practice in the
domain of . configuration management. Nevertheless, it
should still be possible to do so. Therefore, the function
nc_destroyversion is provided in the programmatic
interface to physically delete a particular version of an
artifact from a repository. During deletion, however, a
specific rule is enforced: A version of an artifact can only be
deleted if that version is not a member of a collection.
Consider the example in Fig. 7c. A CM policy is allowed to
delete version 1 of atom Window.c, but the deletion of
version 2 is disallowed because it is a member of version 2
of the collection GUI-1ib. While it may seem as though we
are making a policy decision through this restriction, it is
one that is intended simply to preserve the consistency of
the repository structure.

The function nc destroyversxon, by itself, is not
sufficient to be able to delete all artifacts from a repository.

A second, implicit form of deletion has to be provided by an .

implementation of the abstraction layer that complements
the explicit use of the function nc_destroyversion. The
implicit deletion has to take care of two specific cases. First,
by allowing artifacts to be removed from a collection with
" the function nc_remove, it is possible that none of the
versions of a certain artifact can be reached in the versioned
directed graph of artifacts (consider applying the function
nc_remove on version 2 of the atom Frame.c). Second, it

is possible to create a sequence in which a new artifact is.

added to a collection in a workspace with the function
nc_add, but removed from that collection by the function
nc_remove before a new version of the collection is stored
in the repository. In both cases, the storage space occupied
by the artifact needs to be automatically reclaimed by an
implementation of the abstraction layer.

3.6 Query Functions
The programmatic interface would not be complete without

the ability to examine the state of artifacts. For example,

when multiple clients share access to an artifact, they
should be able to determine whether any new versions of
the artifact have been created by another client. The query
functions were designed to provide this type of function-
ality. Although simple, these functions are essential in the
development of CM policies because they provide state
information that a CM system would otherwise have to
determine and track itself. The query functions that provide
information about the artifacts in a workspace are particu-
larly important in this respect. :

Although the names of the interface functions speak for
themselves, we provide a one-sentence description and
typical use of each. The function nc_gettype determines
whether an artifact is a collection or an atom and is often
used when recursively opening a collection and all its
containing artifacts in a workspace. To manage version
relationships, such as a revision history, the function

IEEE TRANSACTIONS ON SOFTWARE E‘NGINEERING, VOL. 28, NO. 1,

JANUARY 2002

nc_version can be used to determine the version of an
artifact before and after the function nc_commitchange
has been used to store some changes. The function
nc_lastversion returns the version number of the last
version of an artifact, and is used to check for new versions
of an artifact that may have been added by another client. If
some versions of an artifact have been deleted from a
repository, the function nc_existsversion canbe used to
verify whether or not a particular version is still available.
Finally, the functions nc_isopen and nc_isinitiated
operate on artifacts in a workspace and are used to verify
whether an artifact has been opened and whether it is

“allowed to change, respectively.

3.7 Attribute Functions f

To facilitate, in accordance with the attribute model, the
association of metadata with the artifacts in a repository, the
programmatic interface contains a number of primitive
functions to manipulate attributes. In particular, it is
possible to set the value of an attribute with either the
function nc_setattribute, which sets the value of an
attribute irrespective of whether a value is already set, or
the function nc_testandsetattribute, which only sets
the value of an attribute when the attribute is currently
nonexistent. To remove an attribute, the function
nc_removeattribute is used. This function removes
both the attribute and.its associated value To search the
attributes that may be set on the various versions of an
artifact, the function nc_selectversions is used: For a
particular artifact in the repository and for a desired
attribute -value, it returns the version numbers of those
versions whose corresponding attribute matches the value.

The attribute functions serve a dual purpose. First, they
are used to simply attach metadata to individual versions of
an artifact. For example, it is possible to capture such
characteristics as the author and creation date of the
version, one or more change request identifiers that identify
which particular change requests have been incorporated,
and a short synopsis of the changes made with respect to
the previous version.

The second purpose for Wthh the attribute functions
were designed is to support an artifact locking mechanism. -
In particular, :the function nc_testandsetattribute
only sets the value of an attribute if it does not yet exist. -
Therefore, the function can be used to create a lock on an
artifact by simply setting an attribute that represents the lock.
If the artifact had been previously locked (i.e., the attribute is
set), then the function and, hence, the lock attempt will fail. If
the attribute had not been previously locked (i.e., the

“attribute is not set), then the function and lock attempt will

succeed. The function nc_removeattribute unlocks the
artifact by removing the attribute.

Because of their generic nature, the attribute functions do
not themselves enforce locks. Any enforcement results from
the usage protocol employed by a CM policy. For example,

* a lock can be “broken” (intentionally or unintentionally) by

using the function nc_setattribute on an existing lock
attribute since the function will not fail to set the attribute
even though the attribute already exists. In a similar vein,
the interpretation of a lock on a collection is left to the
CM policy: Does it mean that only the collection itself is

VAN DER HOEK ET AL.: A TESTBED FOR CONFIGURATION MANAGEMENT POLICY PROGRAMMING - 91

locked or does it mean that anything reachable from the
collection is also locked? The usage protocol employed by
the CM policy will provide an answer that is consistent with

* the policy it seeks to implement.

Although using the attribute functions for purposes of
artifact locking results in a rather primitive mechanism, the
functions are powerful enough to directly model the
locking schemes employed in such existing CM systems
as RCS [47], CCC/Harvest [44], and others. If more
sophisticated locking schemes are required, then a separate
lock manager, such as Pern [23], should be used instead.
This approach is consistent with the desire for locking to be
orthogonal to the other functionalities of the interface.

4 THRee NUCM-Basep CM SYSTEMS

The abstraction layer, including its repository model and
programmatic mterface, has been implemented in the
NUCM prototype’ and was used to develop several
CM systems, including the three, rather different ones
described in this section. At present, two of those systems,
namely, DVS [9] and SRM [49], are in everyday use, while
the third system, WebDAV, represents an experimental
implementation of an emerging standard in Web version-
ing [22], [52]. We also created proof-of-concept -imple-
mentations of the widely known check-in/check-out and
change-set policies [18], but used an earlier version of the
prototype to do so; those implementations are presented
elsewhere [50]. '

Below, we discuss each system and use parts of their
implementations to illustrate how NUCM can be used to
program particular CM policies. It should be noted that the
policies themselves are not the contribution. Instead, the
strength of NUCM lies in the ease with which these policies
were constructed and the limited amount of work needed to
make themi suitable for use in a wide-area setting.

4.1 DVS
DVS (Distributed Versioning System) [9] is a versioning
system that is focused on providing a distributed env1ron-
ment in which documents can be authored collaboratively.?
DVS is centered around the notion of workspaces. Specifi-
cally, individual users populate their workspace with the
artifacts needed, lock the artifacts they intend to change,
modify these artifacts using appiopriate tools, and commit
their changes from the workspace to a storage facility. This
policy is similar to the one employed by RCS [47], except
that DVS explicitly recogmzes and versions collections and
moreover, operates in a wide-area setting.

DVS exhibits several characteristics that illustrate the
power of the abstraction layer.

e No special code needed to be developed for DVS to operate
across a network. DVS relies entirely on the mechan-
isms included in NUCM to support distribution. In
fact, DVS can not only operate in a client-server
mode, but it is also possible to federate multiple
physical repositories into a single logical repository
that is used by DVS.

2. http:/ /www.cs.colorado.edu/serl/cm/nucm.html.
3. http:/ /www.cs.colorado.edu/serl/cm /dvs.html.

e Only approximately 3,000 new lines of source code were
needed to create the full functionality of DVS.* The
newly written source code mainly deals with the
text-based user interface, the recursive operations
on workspaces, the proper locking of artifacts, and
the storage of metadata about the artifacts that are
versioned. Other functionality, such as distribution,

. collections, and basic versioning, is inherited from
NUCM.

e The separation of policy from repository allows certain
evolutions in the policies to occur incrementally. This
characteristic of NUCM came upon us unexpectedly.
On one occasion, DVS was being used by 10 people
at five different sites to jointly author a document. It
turned out that the policy provided by DVS did not
completely match the desired process. In response,
some of the DVS functionality was changed and
some new functionality was added. When the second
version of DVS was subsequently and incrementally

. deployed to the various sites, no disruption of work
occurred. Because the NUCM repository required no
downtime and the artifacts in the repository needed
no change, slightly different policies could be used
by multiple authors at the same time.

To demonstrate how DVS is built upon the functions in -
the NUCM interface, Fig. 8 presents a portion of the DVS
source code. (Note that all error handling has been
removed from the example source code shown in this
section.) The use of a NUCM interface function is high-
lighted by a “+”. Illustrated is a procedure that synchro-
nizes a workspace with the latest versions of the artifacts in
a NUCM repository. The procedure allows either a single
artifact or a recursive set of artifacts to be synchronized,
depending on the value of the parameter recursive.

The procedure consists of three parts. In the first part, the
version of the artifact in the workspace and its latest version
in_the repository are determined through the use of the
functions nc_version and nc_lastversion. If these
versions are the same, the artifact is up to date with respect
to the repository. If they are not, the second part of the
procedure takes care of synchronizing the two by replacing
the version in the workspace with the version in the .
repository. Additionally, before the latest version of the
artifact is opened in the workspace, the current version is
closed if it had been opened previously. To avoid the loss of
changes that may have been made to an artifact, the routine . -
first verifies whether the current version has been initiated
for change. If so, the current version of the artifact is
preserved in the workspace and the artifact is not
synchronized. The third and final part of the procedure
deals with the recursive nature of the synchronization of a
workspace. If the artifact to be synchronized is a collection,
its contained artifacts are obtained and each of these
artifacts is in turn synchronized through a recursive call.

42 SRM

SRM (Software Release Manager) [43], [49] is a tool that
addresses the problem of software release management.
SRM supports the release of “systems of systems” from
multiple, geographically distributed sites. In particular,

4. In this paper, all counts of source code lines mclude empty lines and

comments.
5. http:/ /www.cs.colorado.edu/serl/cm/SRM. html

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, "VOL. 28, NO. 1,

92 JANUARY 2002
1 int synchronize workspace(const char* pathname, int recursive)
2 { .
3 /7
4 // Part 1:. Determine the current a.nd latest version of the artifact.
5 /7
6 strlp_versmn.r(pathname strippedpath);
7 * . nc_.version(strippedpath, "', currentversion);
8 nclastversion(strippedpath, "", lastversion);
9 :
10 //
11 // Part 2: If needed, get the latest version of the artifact, unless
12 // it is checked out. '
13 // :
14 if (strcmp(lastversion, currentver51on) '=0) {
15 do_open = 1;
16 * if (nc.isopen(strippedpath, "."))
17 * if (!nc.isinitiated(strippedpath, "."))
18 * nc_close(strippedpath, ".”, 0);
19 © else
20 do_open = 0;
21 if (do-open) { -
22 set_versionx(strippedpath, lastversion);
23 * " nc.open(strippedpath, ".", ".", "");
24 }
25 }
26
27 /7 .
28 // Part 3: If necessary, recursively synchronize the workspace.
29 A/
30 if (recursive) {
31 = " atype = nc_gettype(strippedpath, ".");
32 if (atype == COLLECTION) {
33 * nc_list(strippedpath, "", &members);
34 chdir(strippedpath) ;
35 - start = members;
36 while (members != NULL) {
37 . . synchronize workspace(members->name, recursive);
38 members = members->next;
39 }
40 * nc.destroy.memberlist(start);
41 if (strcmp(strippedpath, ".") != 0)
2 T chdir(M.."); .
43 S BEST AVAILABLE COPY
44 } :
45 }

Fig. 8. DVS routine to synchronize a workspace.

SRM tracks dependency information to automate the
packaging and retrieval of components. Software vendors
are supported by a simple release process that hides the
physical location of dependent components. Customers are
supported by a simple retrieval process that allows
selection and downloading of components whose physu:al
locations are hidden,

Although SRM is not a traditional CM system that
"stores and versions source code, it has many similarities to
a CM system: It needs to manage multiple releases, it
needs to manage dependencies among these releases, and
it needs to store metadata about the releases. Combined
with the need for a distributed repository that allows
multiple sites to collaborate in the release process, these
similarities led to the choice of NUCM as the platform
upon which to build SRM.

Of relevance to the discussion in this paper is the
flexibility that NUCM provides in the creation of a
distributed repository. In particular, we examine the way
new participants can join a federated SRM repository. To

T

facxhtate this functionality, each participating site maintains

a NUCM repository that contains the releases they have

created. Additionally, one of the NUCM repositories in the
federation maintains a collection that contains all releases

from all sites. This is illustrated in Fig. 9 by the repositories -
in’ Rotterdam and Boulder. Both repositories contain a

collection nucm_root that contains a local collection

my_releases and a global collection all_releases. In

each repository, the collection my_releases contains the

releases made by that site. The collection all_releases,

which is shared by both sites, contains all the releases. Note

that the repository in Milano is not part of the SRM

federation at this point. :

The procedure join, presented in Fig. 10, illustrates
how a new physical repository can join an existing SRM
federation. It operates by creating a new collection for local
releases, my_releases, and linking to the existing
collection that contains all relgases, all_releases. To
do so, it first sets up a workspace containing its main
collection nucm_root, then allows the collection to change

VAN DER HOEK ET AL.: A TESTBED FOR CONFIGURATION MANAGEMENT POLICY PROGRAMMING

/ I /
nucm_root | nucm_root
| /
1
|
1
|
I
my_releases all_releases :
1
1
BOULDER i
/’ \\
WordProcessor p ~

MILANO

WordProcessor

|
|
‘GUI-lib GUI-lib

Fig. 9. Federated SRM repository before Milano joins the federation.

int join(const char* host, const char* port)

// Part 1: Set up a workspace.

sprintf(allreleases; " [/ %s: %s/nucm.root/all_releases", host, port);
sprintf(my nucmroot, " / /%s:%s/nucm root”, NUCMHOST, NUCMPORT)
sprintf(myreleases;’ "WORKSPACE/my releases”);

sprintf(collection, "WORKSPACE/nucm root”);

10 * nc.open(myxnucmroot,””, WORKSPACE, "");

11 * nc.nitiatechange(collection);

14 // Part 2: Add a new artifact for my personal releases.

16 mkdir{my releases);

17 * nc.add(myreleases, ””, collection, ”");

20 // Part 3: Fmport an existing artifact for the list of all releases.
22 * nc.add(allreleases, ””, collection, ”");

23 * © nc_commitchangeandreplace(collection, ””);
24 * nc.close(collection, ", 0);

BEST AVAILABLE GOPY

Fig. 10. SRM routine to join a federation.

93

94

/

nucm_root

my._teleases all_releases

Fig. 11. Federated SRM repository after Milano joins the federation.

by using the function nc_initiatechange and, subse-
quently, uses the function nc_add to add the newly
created collection my_releases and the existing collection
all_releases to the collection nucm_root. The collec-
tion nucm_root is then stored in the repository using the
function nc_commitchangeandreplace and the work-
space is finally removed by using the function nc_close.
The result of all these actions is shown in Fig. 11. Assuming

that the Milano site is being joined with the SRM repository

of Rotterdam and Boulder, the dashed lines indicate the
new artifact and the membership relationships that are
created by the procedure join. Once the artifact and the
relationships are created, Milano is a full part of the
SRM federation; when it adds new releases to the
repository, they can be accessed from all sites.

The main advantage in using NUCM to develop SRM is
that distribution could be isolated. Only two lines in the
example source code of Fig. 11 explicitly deal with
distribution: In line 6 and line 7, the remote repository that
contains the collection all_releases and the local
repository that is going to join the SRM repository are
explicitly identified. After that, all policy programming is, in
fact, transparent with respect to distribution. This particu-
larly exhibits itself in other portions of the SRM policy code.
Adding or removing releases to the SRM repository can

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO. 1,

BOULDER

JANUARY 2002

y,

nucm_root

/ \
all_releases my_releases
=N

1
I
I
1
I
I
|
|
I
l
:
7 N
l / N\
I
AL

GUI-lib

GUI-lib

simply be programmed as additions and removals to the
collections my_releases and all_releases since
NUCM tracks the physical location of these collections.
Similarly, through the collection all_releases, any site
can retrieve releases from the other sites without having to
know where a release is phy51cally located.

This strength of isolating distribution exhibits itself
throughout SRM. Only a small part of the complete
implementation, less than two percent, explicitly deals with
distribution. The remainder of the implementation is
concerned with the actual functionality of SRM itself and,
in fact, relies on the distribution transparency provided by
the internal storage layer of SRM.

4.3 WebDAV , :

WebDAV [22], [52] is an emerging standard that proposes
to add authoring and versioning primitives to the
HTTP protocol [20]. In particular, the standard proposes
extensions in the following five areas:

e Metadata. To be able to describe Web resources,
WebDAV proposes the creation of new HTTP
methods that add metadata to Web resources, as
well as methods to query and retrieve the metadata.

e Collections. To be able to structure Web resources
into higher-level constructs, WebDAV proposes the

VAN DER HOEK ET AL.: A TESTBED FOR CONFIGURATION MANAGEMENT POLICY PROGRAMMING ’ 95

creation of new HTTP methods that allow Web
resources to be grouped into collections, as well as
methods that change the membership of collections.

e Nuame space management. To be able to efficiently
move, copy, and delete Web resources, WebDAV
proposes the creation of new HTTP methods that
manipulate the Web name space. _

e Locking. To avoid multiple entities updating a single
Web resource in parallel and, consequently, losing
changes, WebDAV proposes the creation of new
HTTP methods that allow Web resources to be
locked and unlocked for exclusive write access.

e Version management. To be able to keep a history of
Web resources, WebDAV proposes the creation of
new HTTP methods that allow Web resources to be
versioned. '

Although the objective of WebDAV (i.e., providing an
infrastructure for distributed authoring and versioning) is
slightly different from the objective of NUCM (i.e., provid-
ing a distributed repository to construct configuration
management policies), the _interface methods that have
been proposed for both are strikingly similar. Only two
major differences exist. First, NUCM includes a naming
model that explicitly incorporates a mechanism to refer to
versions of artifacts, whereas the naming scheme of
WebDAV does not define such a mechanism. Second,
WebDAV specifies a particular versioning policy, namely,
the RCS-like lockable version tree, whereas NUCM is
generic with respect to versioning policies.

Because of the similarity between NUCM and WebDAYV,
it seems advantageous to use NUCM to implement
WebDAV, at least in order to quickly determine the utility
of its policy. To this end, we created a simple HITP server
that is also a NUCM client. Most of the new HTTP methods
translate into direct calls to the NUCM interface, but some
require more work. In particular, the versioning routines of
WebDAYV prescribe a policy that is based on a version tree.
To implement this tree, we have to map the versions in the

tree to versions of NUCM artifacts. In our implementation, -

this mapping is created by storing two NUCM artifacts for
each WebDAYV artifact, namely, the actual artifact and an
associated artifact that stores the version tree for that
artifact. In addition, the version tree artifact has attributes
associated with it that map each version number in the tree
to a NUCM version number.

Fig. 12 shows how one of the procedures in our
* WebDAV implementation, namely, checkin, takes advan-
tage of this approach. (Note that, because the WebDAV
standard has continued to evolve, the example given here is
not completely consistent with the current version of the
standard.) The function stores a new version of an artifact
and updates the version tree accordingly. Its functionality
can be divided into five separate parts.

In the first part, several parameters used in the
remainder of the function are determined. The names of
the artifact being checked in and its corresponding version
tree artifact are constructed first. Subsequently, the type of
the artifact being checked in and its NUCM version number
under which it was checked out are obtained. .

In the second part of the function, the new version of the
artifact is read from the WebDAV client and, subsequently,
stored in the repository through the use of the function
nc_commitchange. S

The third part of the function serves an important role: It
is the part that updates the version tree. We do not show the .-
actual algorithm that determines the new version number
since it does not involve any use of NUCM functions.
Instead, it is shown how the version tree is obtained from
the repository, updated with the new version information
and stored back into the repository. Note the use of the
function nc_commitchangeandreplace to replace the
version tree since there is no need to store multiple versions
of the version tree itself. o

The fourth part of the function sets new attributes for some
of the artifacts in the repository. In particular, it preserves the
type of the artifact that was checked in and relates the version '
in the version tree with the NUCM version of the new artifact.
Note that the type information is attached to the new version
of the artifact, for which a new NUCM name 'is first
constructed. ' :

Finally, in the fifth part of the function, the artifact that
was previously checked out and locked for modifications is -
unlocked so that other users can now modify this version.

Once again, the reusability of NUCM proved to be
valuable in the implementation of WebDAV. The total
number of lines of source code that were developed to
create a prototype WebDAV implementation was only
1,500, of which approximately 40 percent accounts for a
graphical user interface that can be used to perform
WebDAV operations. : o S

Admittedly, our experimental implementation does not
cover all the functionality of WebDAV. However, the
limited amount of code that needed to be developed and
the minimal time required to produce that code together
demonstrate an important aspect of NUCM: It can be used
to quickly demonstrate prototype CM policies. The devel-
opment of a standard like WebDAV can particularly
benefit from-such an approach since the ramifications of
specific policy decisions can be explored with an early
implementation.

5 RELATED WORK

In its many years of existence, the discipline of configuration
management has produced numerous industrial and
research systems. Some provide only version control facil-
ities, (e.g., RCS [47], SCCS [41], Sablime [5]), others provide
more complete configuration management solutions (e.g.,
CVS [7], CoED [6], Perforce [38]), and yet others provide
integrated environments that incorporate process manage-
ment and/or problem tracking facilities (e.g., Adele [17],
ClearCase [3], Continuus [12]). With respect to distribution,
some of the CM systems are only suited for use at a single site
(e.g., EPOS [35], ShapeTools [31], SourceSafe [32]), others
incorporate a simple, sometimes Web-based, client-server
interface (e.g., DCVS [7], Perforce [38], WWCM [25]), and yet
others provide more advanced distribution mechanisms
such as replication (e.g., ClearCase Multisite [2], Continuus
DCM [13], PVCS SiteSync [28]). To understand the position
of the abstraction layer and its implementation in NUCM in
this large space of CM systems, we examine the evolution of
CM system architectures.
Fig. 13a shows the architecture that has traditionally been
used: A CM system is constructed as a single, monolithic
entity that tightly integrates its storage mechanism with its
CM policy. This approach is still the way in which most

96 - IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO. 1, JANUARY 2002

. int checkin(const char* path, const char* oldversion, FILE* client) -

{
/1

// Part 1: Determine necessary information.

/1

sprintf(tree, " //%s:%s/nucmxoot/TREE/%s”, NUCMHOST, NUCMPORT, path);
sprintf(treefilename, " %s/%s", WORKSPACE, (rindex(tree, ’/’)+1));

sprintf(artifact, " / /%s:%s /nucm_root/%s:%s" , NUCMHOST, NUCMPORT, path, nucmversion);
9 sprintf(filename, ” %s/%s"”, WORKSPACE, (rmdex(artlfact [)+1));

10 * nc_getattributevalue(tree, ””, oldversion, nuqmversion);

11 * nc.getattributevalue(artifact, ””, "TYPE”, type);

12

13

14 // Part 2: Store new version of the artifact.
15 /!l

16 * nc.open(artifact, " WORKSPACE ")

17 * nc_mltlatechange(ﬁlename "y

18 fd = open(filename, O_.TRUNC — O_WRONLY);
19 while ((n = fread(bytes, 4096, 1, client)) ; 0)

20 * write(fd, bytes, n);

21 close(fd); :

22 * nc_commitchange(filename, ””, newnucmversion);
23 * ncclose(filename, ””, 0);

24)

25)

26 [/ Part 3: Update the version tree.

27 /!

28 * nc_open(tree, " WORKSPACE Y
29 * nCJnltxatechange(treeﬁlename WORKSPACE),
30 fd = fopen(treefilename, "r+");

32 - /* Determine new version number_ */

34 sprmtf(lme, "%s CHILD OF %s“ ”, newversion, oldversion);
35 fputs(line, fd);

36 fclose(fd);)

37 * nc.commitchangeandreplace(filename, "");

38 * nc.close(filename, ", 0);

39

w0 |/ '

41 // Part 4: Set new attributes.

2 //

43 sprint{(newartifact, ” //%s: %s/nucm_root/%s %s”, NUCMHOST, NUCMPORT, path, newnucmversion);
44* nc_testandsetattribute(tree, 7", newversion, newnucmversion);)

45 * nc_testandseta.ttnbute(newartlfact n NTYPE”, type);

46 .

av /] ' '

48 // Part 5: We are done, unlock the artifact. ~ BEST AVAILABLE copY
49 // :

50 * ncremoveattribute(artifact, """, "LOCK");

51 }

Fig. 12. WebDAV routine to check in a file.

CM systems are built, as exemplified by CoED [6] and DSCS concurrency control, and rollbacks. These services no longer
[33], both of which were only recently developed. The have to be implemented by the organization that develops
advantage of this architecture is that it allows a CM system the CM system.
to optimize its storage to precisely match the needs of the Following the pattern of providing -an increased level of
CM policy. A clear disadvantage, however, is that a abstraction with which to build CM systems, Fig. 13c
resulting CM system tends to be rather inflexible [15]. illustrates that NUCM represents the next step in this
Moreover, such a CM system typically has to be constructed ~ evolutionary pattern. Although NUCM currently does not
~ from the ground up, which is a major effort even today. provide the same level of robustness and reliability as a
As CM systems have become more advanced, some have database, the abstraction layer that it provides.has the
turned towards using a commercial, generic database advantage of being highly specialized towards configura-
management system as the underlying storage mechanism tion management. Thus, as compared to a generic database,
(e.g., ClearCase [3], Continuus [12], TrueCHANGE [45]). the model and interface defined by the abstraction layer
Illustrated in Fig. 13b, the advantage of this solution is that raise the level of abstraction with which CM policies can be
the database management system provides a reliable and constructed and thereby facilitate their rapid implementa-
reusable platform that offers such ‘services as transactions, tion. As stated, NUCM currently lacks such essential

1

\

VAN DER HOEK ET AL.: A TESTBED FOR CONFIGURATION MANAGEMENT POLICY PROGRAMMING

97

CM policy
implementation

CM policy
implementation
via
CM-specific API

Complete
CM system - generic API
. implementation. o
CM-specific,
distributed
Generic * repository
database

Gy

Fig. 13. Evolution of CM system architectures.

services as transactions, rollbacks, and caching, but it is
anticipated that these can be incorporated in future
implementations. Then, actual CM systems can be imple-
mented based on the abstraction layer defined in this paper,
while exhibiting the same qualities as a CM system built on
top of a traditional database.

NUCM is only one of several systems that fall into the
category of Fig. 13c. The other systems are CME [25],
Gradient [4], CoMa [51], and ScmEngine [10].

. CME extends RCE [26], itself a progtammatic interface to
RCS [47], with collection management. CME is similar to
NUCM in that it provides an architectural separation of the
repository from the actual system that stores and versions
the artifacts. However, two significant differences exist.
First, the programmatic interface of CME is not generic with
respect to CM policies since it only contains functions that
implement the check-in/check-out policy. The' second
difference is that CME is not distributed since it only
interfaces to a single repository at a single site. Thus,

whereas NUCM provides support for the construction of a_

variety of distributed CM policies, CME only provides
support for the construction of centralized CM policies that
are based on the check-in/check-out model.

Gradient is a CM repository that is based on automatic
replication. Each update-that is made to an artifact is
broadcast instantly as a delta to all replicas. Because
Gradient only allows incremental modifications to the

artifacts it manages and, furthermore, assumes that mod- '

ifications are independent of each other, it permits
simultaneous updates to a single artifact at multiple sites.

“Gradient is similar in spirit to NUCM in that it provides an

architectural separation of the storage mechanism from the
CM system that uses it. But, as with CME, Gradient only
supports a specific policy, both with respect to distribution
(where it only supports replicated repositories), as well as
with respect to CM policy (where it only supports the
check-in/check-out policy). _

CoMa is perhaps the one system that is closest in nature
to the functionality provided by NUCM. CoMa introduces
graph rewriting as a method of constructing specific
CM policies. Based on a composition model, it utilizes
graph rewriting rules to assert and enforce constraints.
These constraints govern the evolution of the artifacts that
are managed. The goal of CoMa is to evolve the interrelated
sets of heterogeneous artifacts that are created throughout

()

the software life cycle. Naturally, it therefore shares some of
its goals with NUCM. Specifically, it needs to manage
different kinds of artifacts and it needs to tailor its
CM policy to the artifacts that are managed. As compared
to NUCM, however, CoMa is limited in that it only
supports the construction of variations of the check-in/
check-out policy. Moreover, it does not support the

distribution of artifacts over multiple physical locations: -

Thus, even though CoMa is more generically applicable
than CME, it is similarly limited in that it only supports a
small number of centralized CM policies. ’

ScmEngine is a distributed CM repository based on the
X.500 directory protocol [39]. X.500 directory entries
contain metadata describing the artifacts that are stored
in physical repositories. Access servers leverage the
standard X.500° directory protocol to create a logical
repository that can be accessed by .CM client programs.
This distribution mechanism is, in essence, the same as the
one defined by the distribution model of the abstraction
layer. However, the remainder of the repository model and
the programmatic interface provided by ScmEngine are
significantly weaker than the ones defined by our abstrac-
tion layer. The repository model does not include collec-
tions and lacks the concept of version qualifiers to navigate
in the version space. Moreover, the programmatic interface
is very specific and lacks support for the construction of a
wide variety of CM policies, only supporting the tradi-
tional check-in/check-out policy. s

Outside the domain of configuration management, we can
identify groupware and versioned databases as two im-
portant lines of work that are closely related to the work
presented in this paper. In groupware, the need for
distribution, versioning, and workspaces seems .to imply
that our abstraction layer could be appropriate for use in
constructing a groupware system. However, this is not so.
Whereas the abstraction layer is based on the principle of
workspaces that provide isolation from changes by others,
groupware systems tend to focus on collaborative work-
spaces [16], [21]. The set of issues involved in supporting each

is rather different and, consequently, we believe groupware, .

even though related, falls outside of the domain of NUCM.

Versioned databases (e.g.,, ODE [1], TVOO [42]) are
related to NUCM since NUCM itself can be viewed as a
versioned database. In fact, many of the features of NUCM
are shared by versioned databases. However, an important

BEST AVAILABLE GOPY

98 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, . VOL..'28, NO. 1,

difference exists, which is the presence of a specific
repository model and its associated programmatic interface.
Whereas these are generic in nature in a versioned database
(e.g., an entity relationship model with SQL), both are
highly specialized by our abstraction layer. In essence, one
could consider the abstraction layer that is incorporated in
NUCM to be a layer on top of a versioned database that
implements a particular schema (the repository model) and
provides a number of standard views and operations (the
programmatic interface). :

6 CONCLUSION

_For the past few years, the field of configuration manage-
ment has been in a consolidation phase with the research
results of the 1980s being transferred to the commercial
products of the 1990s. Nonetheless, new CM systems are still
being proposed and constructed. Some of these are new
entries in an increasingly competitive marketplace. Others
implement proprietary solutions that are tailored to the
situation at hand. Yet others explore new ground and form
the basic research that will lead to the next generation of CM

systems. During their design and implementation, though,
all face what we' consider. to be one of the most pertinent
problems in the field of configuration management: No
suitable platform exists that can serve as a flexible testbed for
the rapid construction of potentially distributed CM systems.
Based on the critical observation that, to effectively
address this problem it is necessary to separate CM

repositories from CM policies, this paper has introduced a
novel abstraction layer that represents a first step towards
addressing this problem. The abstraction layer precisely
defines a generic model of a distributed repository and a
programmatic interface for implementing, on top' of the
repository, spécific CM policies. Characteristics of "the
abstraction layer are its policy independence, its ability to
manage a wide variety of different kinds of artifacts, its
inherent distributed operation, and its ability to support
traditional CM functionality. .

The abstraction layer was designed to facilitate the rapid
construction of, and experimentation with, CM policies.

However, it has proven to facilitate more than that. DVS

and SRM, two of the systems that were originally

constructed to demonstrate the applicability and flexibility
~of the abstraction layer,. have evolved into complete
CM systems. Both are now in use in settings that involve
multiple parties in multiple geographical locations and both
continue to evolve with respect to the functionality they
provide. The abstraction layer, thus, not only supports the
" construction of new €M policies, but also their gradual
evolution into more mature systems.

Our work does not end here. Although we certainly
believe that the abstraction layer is a step in the right
direction towards providing a generic, reusable, and
distributed platform for CM policy programming, much
work remains to be done. In particular, it is our belief that
the abstraction layer facilitates the construction of standard

policy libraries, thereby even further reducing the effort of -

implementing a CM system. Moreover, we expect to be able
to use the abstraction layer as a vehicle for exploring other

important pg(s)}alﬁ\ﬁ‘smlé\&ceﬁgguration management. For

JANUARY 2002

example, we believe the abstraction layer provides a
suitable platform for investigating the. problems of
CM pohcy integration [37].

ACKNOWLEDGMENTS

This work was supported in part by the Air Force Materlel
Command, Rome Laboratory, and the Advanced Research
Projects Agency under Contract Numbers F30602-94-C-0253
and F30602-98-2-0163. The content of the information does
not necessarily reflect the position or the policy of the
Government and no official endorsement should be inferred.

REFERENCES

[1] R Agrawal S. Buroff, N.-H. Gehani, and D. Shasha, “Object
Versioning in ODE,” Proc. Seventh Int’l Conf. Data Eng., pp. 446—
455, Apr. 1991.

[2) L. Allen, G. Fernandez, K. Kane, D. Leblang, D. Mmard and J.
Posner, “ClearCase MultiSite: Supporting Geographically-Distrib-
uted Software Dévelopment,”- Software Configuration Management:
Int’l Conf. Software Eng. SCM-4 and SCM-5 Workshops Selected Papers
pp- 194-214,1995.

[3] Atria Software, ClearCase Concepts ‘Manual. Natick, Mass 1992

[4] D. Belanger, D. Korn, and H. Rao, “Infrastructure for dee—Area
Software Development,” Proc. Sixth Int’l Workshop Software
Configuration Management, pp. 154-165 1996.

[5] Bell Labs, Lucent Technologies, Sablime v5.0 User’s Reference
Manual. Murray Hill, New Jersey, 1997.

[6] - L. Bendix, P.N. Larsen, A.L. Nielsen, J.L.S. Petersen, “CoED—A

" Tool for Versioning of Hierarchical Documents,” Proc. Eighth Int'l

Symp. System Configuration Management, 1998.

[71 B. Berliner, “CVS II: Parallelizing Software Development,” Proc
1990 Winter USENIX Conference, pp. 174-187, 1990.

(8] . C. Burrows and 1. Wesley, Ovum Evaluates Configuration Manage—
ment. Burlington, Mass.: Ovum Ltd., 1998.

[9] A. Carzaniga, DVS 1.2 Manual. Dept of Computer Science, Univ.
of Colorado, Boulder, June 1998. .

(10} J.X. Ci, M. Poonawala, and W.-T. Tsai, ”ScmEngme A sttnbuted

Software Configuration Management Environment on X.500,” Proc.

Seventh Int’l Workshop Software Conﬁgumtzon Management, pp. 108-
127,1997. :

P.C. Clements and N. Weiderman, “Report on the Second

International Workshop on Development and Evolution of Soft-

ware Architectures for Product Families,” Technical Report SEI-

98-SR-003, Software Eng. Inst., Pittsburgh, Penn., May 1998.

Continuus Software Corporation, Continuus Task Reference. Irvine,

Calif., 1994. - :

Continuus Software Corporation, Distributed Code Management for

Team Engineering. Irvine, Calif., 1998. ‘

S. Dart, “Concepts in Conflguratlon Management Systems,” Proc
Third Int’l Workshop Soﬁware Configuration' Management, pp. 1—18

1991.

‘S. Dart, “Not All Tools are Created Equal,” Application Develop-

ment Trends, vol. 3, no. 10, pp. 39-54, Oct: 1996.

A. Dix, T. Rodden, and I. Sommerville, “Modeling the Sharing of

Versions,” Proc. Sixth Int’l Workshop Software Conﬁgumtzon Manage-

ment, pp. 282-290, 1996.

[17]]. Estublier and R. Casallas, “The Adele Configuration Manager,”
Configuration Management, Trends in Software, W. Tichy, ed., no. 2,
pp- 99-134, 1994
P.H. Feiler, “Configuration Management Models in Commercial
Environments,” Technical Report SEI-91-TR-07, Software Eng.
Inst., Pittsburgh, Penn., Apr. 1991.

P.H. Feiler and G. Downey, “Transaction-Oriented Configuration

-Management: A Case Study,” Technical Report CMU/SEI-90-TR-
23, Software Eng. Inst., Pittsburgh;, Penn., 1990.

R. Fielding, J. Gettys,]C Mogul, H. Frystyk, L. Masinter, P. Leach
and T. Berners-Lee, “Hypertext Transfer Protocol-HTTP/ 1 1,”
Internet Proposed Standard RFC 2068, Jan. 1998. -

P. Frohlich and W. Nejdl, “WebRC: Configuration Management
for a Cooperation Tool,” Proc. Seventh Int’l Workshop Software
Configuration Management, pp- 175-185,'1997.

{11]

(121
(13]
(14]

[15]
(16}

o)
[19)
[20]

[21]

VAN DER HOEK ET AL.: A TESTBED FOR CONFIGURATION MANAGEMENT POLICY PROGRAMMING ' 99

[22] Y.Y. Goland, E.J. Whitehead, Jr., A. Faizi, S. Carter, and D. Jensen,
“HTTP Extensions for Distributed Authoring—WEBDAYV,” Inter-
net Proposed Standard RFC 2518, Feb. 1999.

G.T. Heineman, “A Transaction Manager Component for Co-
operative Transaction Models,” PhD thesis, Columbia Univ.,
Dept. of Computer Science, New York, June 1996.

T. Hung and P.F. Kunz, “UNIX Code Management and Distribu-
tion,” Technical Report SLAC-PUB-5923, Stanford Linear Accel-
erator Center, Stanford, Calif., Sept. 1992.

JJ. Hunt, F. Lamers, J. Reuter, and W.F. Tichy, “Distributed
Configuration Management via Java and the World Wide Web,”
Proc. Seventh Int’l Workshop Software Configuration Management,
pp- 161-174, 1997.

JJ. Hunt and W.E. Tichy, RCE API Introduction and Reference
Manual. Germany: Xcc Software, 1997.

JJ. Hunt, K-P. Vo, and W.F. Tichy, “Delta Algorithms: An
Empirical Analysis,” ACM Trans. Software Eng. and Methodology,
vol. 7, no. 2, pp. 192-214, Apr. 1998.

INTERSOLV, PVCS VM SiteSync and Geographically Distributed
Development. Rockville, Md., 1998.

R. Leung, “Versioning on Legal Applications Using Hypertext,”
Proc. Workshop Versioning in Hypertext Systems, Sept. 1994.

Y.-J. Lin and S.P. Reiss, “Configuration Management with Logical
Structures,” Proc. 18th Int’l Conf. Software Eng., pp. 298-307, Mar.
1996.

A.Mahler and A. Lampen, “An Integrated Toolset for Engineering
Software Configurations,” Proc. ACM SOFSOFT/SIGPLAN Soft-
ware Eng. Symp. Practical Software Eng. Environments, pp. 191-200,
Nov. 1988. .

Microsoft Corporation, Managing Projects with Visual SourceSafe,
Redmond, Wash., 1997. :

B. Milewski, “Distributed Source Control System,” Proc. Seventh
Int'l Workshop Software Configuration Management, pp. 98-107, 1997.
Mortice Kern Systems, Inc., Untangling the Web: Eliminating Chaos,
Waterloo, Canada, 1996.

B.P. Munch, “Versioning in a Software Engineering Database—the
Change-Oriented Way,” PhD thesis, DCST, NTH, Trondheim,
Norway, Aug. 1993. i

B. O'Donovan and J.B. Grimson, “A Distributed Version Control
System for Wide Area Networks,” Software Eng. J., Sept. 1990.

F. Parisi-Presicce and A.L. Wolf, “Foundations for Software Config-
uration Management Policies Using Graph Transformations,” Proc.
2000 Conf. Foundational Aspects of Software Eng., Mar. 2000.

Perforce Software, Networked Software Development: SCM over the
Internet and Intranets. Alameda, Calif., Mar. 1998.
Recommendation X.500 (08/97)-Information Technology—Open
Systems Interconnection-the Directory: Overview of Concepts,
Models and Services, Aug. 1997.

RJ. Ray, “Experiences with a Script-Based Software Configuration
Management System,” Software Configuration Management: Int’l
.Conf. Software Eng. SCM-4 and SCM-5 Workshops Selected Papers,
1995. .
M.]. Rochkind, “The Source Code Control System,” IEEE Trans.
Software Eng., vol. 1, no. 4, pp. 364-370, Dec. 1975.

L. Rodriguez, H. Ogata, and Y. Yano, “An Access Mechanism for a
Temporal Versioned Object-Oriented Database,” IEICE Trans.

(23]
(24]
25)
(26]
[27}

(28]
(29)
(30]

B1]
[32]
[33]

(34]

[33]

(36]
(37]

(38}

39

[40]

(41}

(42

Information and Systems, vol. E82-D, no. 1, pp. 128-135, Jan. 1999. -

R.A. Smith, “Analysis and Design for a Next Generation Software
Release Management System,” Master’s thesis, Univ. of Colorado,
Boulder, Dec. 1999. i

Softool Corp., CCC/Manager, Managing the Software Life Cycle across
the Complete Enterprise, Goleta, Calif., 1994.

Software Maintenance & Development Systems, Inc., Aide de Camp
Product Qverview, Concord, Mass., Sept. 1994.

SQL Software, The Inside Story: Process Configuration Management
with PCMS Dimensions, Vienna, Va., 1998.

W.F. Tichy, “RCS, A System for Version Control,” Software—
Practice and Experience, vol. 15, no. 7, pp. 637-654, July 1985.
A. van der Hoek, “A Generic, Reusable Repository for Config-
uration Management Policy Programming,” PhD thesis, Dept. of
Computer Science, Univ. of Colorado, Boulder, Jan. 2000.

A. van der Hoek,, R.S. Hall, D.M. Heimbigner, and A.L. Wolf,
“Software Release Management,” Proc. Sixth European Software
Eng. Conf., pp. 159-175, Sept. 1997.

A. van der Hoek,, DM. Heimbigner, and A.L. Wolf, A Generic,
Peer-to-Peer Repository for Distributed Configuration Manage-
ment,” Proc. 18th Int’l Conf. Software Eng., pp. 308-317, Mar. 1996.

[43]

{44]
{451
[46]
[47]

(48]

(49]

[50]

[51] B. Westfechtel, “A Graph-Based System for Managing Configura-
tions of Engineering Design Documents,” Int'l J. Software Eng. and
Knowledge Eng., vol. 6, no. 4, pp. 549-583, 1996.)

EJ. Whitehead, Jr., “World Wide Web Distributed Authoring and
Versioning (WebDAV): An Introduction,” StandardView, vol. 5,
no. 1, pp. 3-8, Mar. 1997.

A. Zeller and G. Snelting, “Unified Versioning Through Feature
Logic,” ACM Trans. Software Eng. and Methodology, vol. 6, no. 4,
pp. 398441, Oct. 1997.

(52}

[53]

André van der Hoek received a joint BS and MS
degree in business-oriented computer science
from the Erasmus University, Rotterdam, and the
PhD degree in computer science from the
University of Colorado at Boulder. He is an
assistant professor in the Department of infor-
mation and Computer Science and a faculty
member of the Institute for Software Research,
both at the University of California, Irvine. His

o research interests include configuration manage-
ment, software architecture, configurable distributed systems, and
software education. He has developed several CM systems, was a
cochair of the Ninth International Symposium on System Configuration
Management, and is chair of the Tenth International Workshop on -
Software Configuration Management. He is a member of the IEEE and
the IEEE Computer Society.

Antonio Carzaniga received the Laurea de-
gree in electronic engineering and the PhD
degree in computer science from Politecnico di
Milano, Italy. He is currently a research’
associate with the Department of Computer
Science at the University of Colorado at
Boulder. His research interests are in the areas
of distributed systems engineering, software
engineering, computer networks, content-based

* routing, middleware, programming languages,
and software engineering tools.

Dennis Heimbigner received the PhD degree in
computer science from the University of South-
ern California, Los Angeles. He is a research
faculty member in the Department of Computer
Science, University of Colorado at Boulder. Prior
to that, he was at TRW in Redondo Beach,
California. His current research interests include
distributed computing, peer-to-peer computing,
and configuration management. He has pub-
lished papers in the areas of configuration

management, distributed computing, software process, software devel-

. opment environments, concurrent programming, and programming
language semantics. He is a member of the IEEE and the |IEEE
Computer Society.

Alexander L. Wolf received the PhD degree in
computer science from the University of Massa-
chusetts at Amherst. He is a faculty member in
the Department of Computer Science, University
of Colorado at Boulder. Previously, he was at
AT&T Bell Laboratories in Murray Hill, New
Jersey. His research interests are. in the dis-
covery of principles and development of tech-
nologies to support the engineering of large,
AR : complex software systems. He has published
papers in the areas of software engineering environments and tools,
software process, software architecture, configuration management,
distributed systems, and persistent object systems. Dr. Wolf served as
program cochair of the 2000 International Confereénce on Software
Engineering (ICSE 2000), is currently serving as vice chair of the ACM
Special Interest Group in Software Engineering (SIGSOFT), and is on
the editorial board of ACM Transactions on Software Engineering and
Methodology (TOSEM). He is a member of the IEEE Computer Society.

> For more information on this or any computing topic, please visit
our Digital Library at http://computer.org/publications/dlib.

BEST AVAILABLE GOPY

A Tamper-Detecting Implementation of LiSpv

Dennis Heimbigner
- Computer Science Department
University of Colorado, Boulder, CO 80309-0430, USA
Dennis.Heimbigner @colorado.edu

Abstract
An important and recurring security scenario involves
the need to carry out trusted computations in the context of
untrusted environments: It is shown how a tamper-detecting
interpreter for a programming language — specifically Lisp
1.5 — combined with the use of a secure co-processor can
address this problem. The term “tamper-detecting” means
that any attempt to corrupt a computation carriéd out by a
program in the language will be detected on-line and the
" computation aborted. This approach executes the
interpreter on the secure co-processor while the code and
data of the program reside in the larger memory of an
associated untrusted host. This allows the co-processor to
utilize the host’s memory without fear of tampering even by
a hostile host. This approach has several advantages
including ease of use and the ability to provide tamper-
detection for any program that can be constructed usmg the
language.
Keywords: co- processor, anti-tamper, Lisp, on-hne

1. Computingina Hostile Environment

" An’important and recurring security ‘scenario involves
the need to carry out trusted computations in the context of
.untrusted environments. One approach is to combine a
secure co-processor [6][15] with an untrusted host
computer. The secure co-processor provides the
environment in which to perform trusted computations, and
the insecure host provides additional resources that may be
used by the trusted processor. Unfortunately, there is no
guarantee that the host will not tamper with the resources
used by the secure co-processor in an attempt to corrupt the
operation of the secure co-processor. ’
This paper demonstrates a solution where a
programming language system — specifically Lisp 1.5 -
used to provide a convenient and genéral mechanism for

tamper-detecting utilization of a specific resource, namely

the memory of an untrusted host. An interpreter for the
language system resides on the secure co-processor, but the
programs and data executed by the interpreter reside in the
memory of the untrusted host.

In this context, the term “tamper-detecting” means that '

any attempt to corrupt a computation carried out by a
program in the language will be detected on-line (before the
computation is complete), and the computatlon will be
aborted.

In order to limit the scope of the problem only the issue
of integrity is addressed in this paper; the issue of
confidentiality is deferred. It seems reasonable, however, to
assume that adding confidentiality is a straightforward
application of encryption to the values stored in the host
memory.

303-492-6643 (voice) 303-492-2844 (fax)

2. Why Lisp 1.5?

. Lisp 1.5 was chosen as‘ the target programming
language primarily because of its simplicity and to
demonstrate proof-of-concept. Lisp provides a simple,
usable, and -complete language. ‘It has ‘a small
interpreter [11] that can easily be implemented on a secure
co-processor with limited resources. Equally important,
Lisp uses lists as its only data structure, both for programs
and for data; hence tamper detection can be applied to both
code and data with no extra effort. Thus Lisp provides a
good platform for exploring issues in tamper-detecting
language implementations.

3. Lisp List Representatlon

This paper assumes familiarity with the Lisp 1.5
language and its implementation. A complete review of the
language and its original implementation is available in the
“Lisp 1.5 Programmer s Manual” [8] by John McCarthy »
etal.

Briefly reviewing, Lisp lists are compose‘d of cells

. linked via pointers. A standard Lisp cell consists of three

fields: (1) Car and (2) Cdr pointers fo other cells and- (3) a
flag field indicating properties of the cell. Traditionally, the
“list” is considered to be the set of cells reached by
following the Cdr pointers. Cells reached through the Car
pointer are often referred to as “sublists”. Cyclic lists are

-allowed, as are lists' with common sublists. The standard

flags are as follows.

1. ATOM - the cell format is that of an atomic (i.e., non-
list cell) value.

2. NUMBER - a subclass of ATOM indicating that this
cell holds a numeric value.

3. FREE - this cell is on the freelist.

MARK, CARCHAIN, and CDRCHAIN - ~for use
during garbage collection (see Section 7).

In the implementation used here, the Car of an atom
cell points to the name represented as a list of integers,
where each integer is the value of a character in the name.
The Cdr field of an atom is used to link it into a list of all
known atoms (the OBLIST). We assume that atoms can be
created but never destroyed. The root-of the OBLIST is one -
of several special pointers kept in the memory of the secure
co-processor where they are immune from insecure
modification. The value of a non-integer atom is handled
using the traditional ALIST and APVAL mechanisms. Nil is
a special atom whose value is itself and which is
traditionally used to terminate lists. Numeric atoms contain
the integer value in the Cdr field. This makes the reasonable

"assumption that an integer and a pointer have the same size.

4. Attack and Trust Assumptions

The critical trust assumption is that'any values kept in
the memory of the secure co-processor cannot be directly
read or modified by the untrusted host. Thus the code and
data on the secure co-processor constitute the trusted

computing base for the Lisp implementation. The only

assumed attack mechanism by which the host can tamper
with a computation of the secure co-processor is through the
values the host returns in response to read requests from the
secure co-processor. Specifically not addressed are any
physical attacks against the secure co-processor.

5. Secure Co-Processor — Host Access
Protocol L
The secure co-processor accesses the host through the
following primitive operations.
. read(i) — return the content of host memory location i.

. write(i,c) — write ¢ as the new content for host memory
location i. ,

. alloc(n) — allocate n sequentlally located cells of new
host memory and return the address of the start of that
memory. :

. release() - 1et the host reclaim all allocated memory.

To simplify the Lisp interpreter in the co-processor, the
above operations are wrapped by the following Lisp-
oriented operations.

« CAR(p), CDR(p) — read the cell (thh tamper detection)
pointed to by p and extract either the Car or Cdr field
respectively.. -

« CONS(p.q.f) — construct the content of a cell with p in its

© Car field, with g in its Cdr field, and with f in its flag
field. Then obtain a pointer to a free cell from the freelist
and write (with tamper detection) the newly constructed
cell into that free cell.

. new() — return a pointer to an unused cell. It is assumed
that the cell comes from the freelist, which is a special list
of unused cells linked together through their Cdr fields
and with the special FREE flag set. Cells are checked for
tampering when they are removed from the freelist. If all
space is exhausted, then an alloc() request is made to the
host to obtain more memory to construct a new freelist.

6. Basic Elements of Tamper-Detectlon

Tamper-detection is achieved by dividing the whole

computation (the program ‘execution) into epochs. Each
epoch has an associated index that acts as a timestamp for
all write operations performed during that -epoch. Epoch
boundaries are - defined by occurrences of garbage
collection. Thus, every ‘time the garbage collector is
invoked, a new epoch begins. The sequence of epochs
continues until the computation is complete.

" Tampering with a cell’s content is detected by adding a

cryptographic signature as a new field in each cell (the o

field in Figure 1). The signature is computed using any
reasonable collision/computation resistant (i.e., one-way and
hard to invert) and second pre-image resistant hash function

such as SHA-1 [9] or MD5 [9]. The hash function takes the

ordered concatenation of the following four values as its

input.

« Cell content — the Car, Cdr, and Flags fields (also
ordered).

o Cell address — the address from which the cell was read.

. Time stamp — the current epoch index.

. Secret key — a key known bnly to the secure co-
processor.

Whenever a cell is read, the 51gnature is recomputed
and if it matches the stored signature, then it is assumed that
the Car, Cdr, and Flag fields are valid. The signature field
allows the content of a cell to be validated using only the
address of the.cell, the content of the cell, and the secret key.
and epoch index information contained in the secure co-
processor. Note that the signature, by itself, does not prevent
replay attacks, only synthesis attacks.

The epoch indices need not be sequential since only
two are ever used at any point in time, and then only during
garbage collection. So, the epoch index can be any non-
repeating sequence of random numbers. This suggests that
the need for the epoch index can be replaced by using the
secret key instead. This has the advantage of introducing a
new secret key for every epoch, which provides a natural
mechanism for re-keying. In subsequent discussion, it is
assumed that the epoch index and the secret key are
combined into a single epoch key.’

-It is important to note that in the absence of encryptlon
the security parameter for this signature is not determined
by the total input size (512 bits), but rather by the size of the
secret key (128 bits). As a consequence, brute force attacks
on the signature are p0551ble, but are assumed to be hard.
This is in line with prior work [4], which assumes the
adversary has limited computational power. Information
theoretic bounds [1]{3] are not considered here.

While the signature prevents synthesis, replay is
prevented by enforcing the write-once-per-epoch property.
This means that during an epoch, any given cell in the host
memory will be written at most once. This property is
enforced by the. fact that the only memory writing that can
occur is through the CONS procedure, and that operator is
defined to always store 1ts result in a new cell taken from
the freelist.

Within an epoch, a cell will have at ‘most two values as
its content. For cells that are already allocated at the
beginning of the epoch, their content will never change. For
cells that are on the freelist, their initial content is the initial
value as a member of the freelist. The second is the value
written into it at the time it is allocated. Thus for any cell,
the only possible replay attacks are the following:

1. Replay the cell content from another epoch,

2. Replay the content of some other cell in the same
epoch, '

3 Replay the content of an allocated cell as it was when it

was on the freelist.

Since the signature includes the cell address and the
epoch key, cases 1 and 2 can be detected by failure to

validate the sxgnature when the cell is read from the host
processor. Case 3 will be detected by the presence of a
FREE flag, which cannot occur when reading a cell
reachable by any pointer (other than the head of the freelist).
Thus the only cell value that an attacker can return is the
correct value of the cell as written (once) during the epoch.

The write-once property has some important
consequences. In particular, it disallows use of traditional
extensions. to Lisp such as REPLACA, REPLACD, and
PROG .because they support direct cell” modifications.
Write-once does not prevent lambda. binding (using an
ALIST) and SETQ (using an APVAL list); see the longer
technical report [6] for details.

7. Epoch Transition by Garbage Collection

The transition from one epoch .to the next is tied to
garbage collection. Garbage collection is expected to have
two specific effects upon its completion.

« All unreachable cells have been linked mto a single
freelist.

. All reachable cell srgnatures have been updated based on
* the new epoch key.

The garbage collection phase v101ates the write-once-
per-epoch assumption and so it offers significant
opportunities for tampering. Replay attacks are especially
tempting because each cell will be written several times.

In the following discussion, familiarity is assumed with
the common approaches to garbage collection. In particular,
famlhanty is assumed with the standard mark-and-sweep
approach, whrch was chosen because it isolates the

_collection activity into a single phase for which special anti-

tampering mechanisms can be used. Knowledge of the well-

‘known Schorr-Waite(-Deutsch) [12] algorithm for marking

is also assumed. This algorithm was chosen because it
avoids the need for a separate stack. As’it performs its
depth-first walk, this algorithm temporarily reverses the list
structure of the lists on the current path of the walk. '

The mark phase operates by doing a depth-first

M1 M2

8 Co-Processor
I | Host

>101

Legend
o - signature’ ' v - Mark flag

a - Car Chain Flag B - Cdr Chain Flag ‘

Figure 1. Schorr-Waite marking

traversal of the graph of cells reachable from a defined set
of root pointers kept in the secure co-processor. As each cell
is first reached, it is marked. At the point where a cell is last
touched in the walk, its content is re-signed using the new
epoch key. Thus at the end of the traversal all reachable
cells have been touched and re-written. Since they have
been re-s1gned using the new epoch key,. they have
effectively been moved into the new epoch. A given path
ends when it encounters an atom or encounters a cell that
has already been marked. This latter case can occur either
because some cells may be reachable by more than one path
during the walk or because the list is cyclic. Cells C4 and
C5 in Figure 1 show these two cases respectively.

Durmg the marking process, a cell can be in one of four
states. '

(1) Unmarked — any cell not yet reached .during markmg
will be in the just completed epoch and no garbage collector
related flags will have been set. in the cell..

(2,3) Car or Cdr Chaining — some cells on the current
depth-first path will have their Car or Cdr fields reversed
and will have a flag set to indicate that fact. In addition,
such a cell will have its MARK flag set. It is still consrdered
to be in the just completed epoch.

(4) Complete — any cell for which Car and Cdr chammg is
completed will be in the new epdch and wxll have 1ts
MARK flag set. :

Figure 1 shows a pomt in the traversal of a set of lists.
The dotted lines indicate the boundary betwéen the secure
co-processor and the host. The box labeled P1 at the left
represents a root pointer in the secure co-processor. The
boxes labeled M1 and M2 represent special pointers in the

- secure co-processor. They are used to track the state of the

marking procedure. Thus, M1 points to the last cell in the
current depth-first path (C4) and M2 points to the next cell.
to be marked (C5). Note the reversal of several pointers in
cells C1, C2, and C4 and the “associated flags o (for Car
reversal chaining) and B (for Cdr reversal chaining).

After marking is completed, the sweep phase examines
every cell in the sequential order defined by its memory
address. The chunks of alloc()’d memory are tracked using.
an special ALLOC list. If the cell is unmarked, then it is
unused, and it is marked as a free cell and is linked to the
freelist. In order to avoid a second sweep to reset ‘the mark
bits, the secure co-processor just inverts the sense of the
mark bit so that in the next garbage collection, all cells will
be considered unmarked.

8. Tamper Detecting Garbage Collection .
The goals for garbage collection are three-fold: .

1. Immediately detect attempts to modify a cell’s content,

2. Detect replays no later than the end of garbage
collection.

3. - Detect replays before they can cause garbage collection
to fail,

Thus, we are willing to allow replays to occur as long as
they do not corrupt garbage collection, but in any case,

replays must be detected before normal computation
resumes. ' o

" The first goal is easily met if we continue to sign our
cells every time we write them to the host mémory. Again
assuming that our hash function is hard to invert, we assume
that attempts to modify a cell’s content will fail. So at the
start of garbage collection, a new secret epoch key is
computed. During garbage collection, the o ‘signature field
is recomputed every time a cell is modified. The specrﬁc
epoch key, new or old is chosen based on the step in the

marking phase.
During Car and Cdr chammg, the cell is re-written

using the old epoch key. When traversal of a cell is

completed, the last action is to recompute its o field to
contain its srgnature but using the new epoch key ‘
key if the cell appears unmarked or appears to be ihvolvéd
in Car or Cdr chaining. Otherwise, it is verified usmg the
new epoch key. - :

During the sweep phase, each cell is read in turn and,
based on its content, is either ignored or linked to the
" freelist. Verification of the content of the cell depends on
the flags field of the cell.”

If the cell appears to be unmarked then its signature is
validated using the old epoch key. If valid, then the cell is
rewritten with a flag indicating that it is free. Its Cdr field is
used to link it to the front of the freelist. The signature field
of the free cell is computed using the revised content and
using the new epoch key.

If the cell appears to be marked, then its signature is
~ validated using the new epoch key, and otherwise it is left
untouched.

The claim is that at the end of garbage collection, every
cell is either on the freelist or has been marked. In both
‘cases, the cell has been re-signed using the new epoch key.
At this point, the next epoch starts and computation
resumes. ' '

9. Replay Attacks Agamst Garbage
Collection

While a keyed, cryptographically strong hash function
prevents the host from synthesizing corrupt cell content it
does not necessarlly prevent replay attacks. Whenever a cell
is read from the host memory during either the mark or
sweep phases, a malicious host has the option of providing a
replay of any of the four values stored in that cell during
garbage collection.

1. It can replay the correct content of the cell. .

2. It can replay the content of the cell as it was when
involved in Cdr chaining.

3. It can replay the content of the cell as it was when
involved in Car chaining. :

4. 1t can replay the content of the cell as it was before
garbage collection began.

Obviously Case 1 causes no problem. Cases 2 and 3 can
only usefully occur during the mark phase because the
sweep phase does not use the Car and Cdr chaining flags.

Even during the marking phase, these cases can only

.occur when it possible to reach a cell by more than one path.

As figure 1 shows, this can occur for cells that are sublists
of more than one list (cell C4) or are part of a cyclic list
(cell C5). Under normal circumstances, this would cause the
walk to encounter an already marked cell, which in turn
would cause the walk to stop and back up to continue the
walk down another path : :

If the host provides case 2 or 3 replay, this can cause no
difficulties because the mark flag will be set and will cause
the garbage collector to properly stop its markmg and back
up to a new depth-first path.

Case 4 is a problem both during the mark phase and the
sweep phase. During marking, the legitimate content of the
cell may indicate the cell has already been marked. If
instead the host replays the old, unmarked cell content, then
the garbage collector will happily re-mark that cell and
everything reachable from it as long as the host replays
unmarked cell values, possibly forever. This re-marking by
itself causes no harm because markmg is an 1dempotent
operation.

The same thmg may also happen durmg the sweep
phase. That is, the host may replay the unmarked content of
each cell. In this case, an active cell will be treated as a free
cell and erroneously added to the freelist. Again, this causes
no immediate harm since the cells of the freelist are never
revisited during the sweep phase.

10. A Countlng Solution

The only damagmg effects of a Case 4 replay are to
cause the mark phase to re-mark cells (possibly endlessly)
or to cause the sweep phase to free cells that are really
reachable. The effects of both attacks can be controlled
using a counting technique.

Assume that at the beginning of garbage collection; we
know Tc, the total number of allocated cells. In the
untampered state:

Tc=Rc+Fc Q) ,
where Rc is the total number of reachable cells and Fc is the
total number of free cells. In a possibly tampered state, we
have the following inequality:.

Tc<Mc+Sc (2)

’where Mc is the number of unmarked cells seen during the
"mark phase and Sc-is the number of unmarked cells seen

during the sweep phase. The inequality is a consequence of
the following two inequalities.
Rc<MC (3) Fc<Sc (4)

These two inequalities come from the following
observations. First, if .the attacker uses a case 4 replay
during the mark phase, it will increase the number of
apparently unmarked cells by 1, hence equation (3) will
hold. If the attacker uses the same replay during the sweep
phase, it will increase the number of apparently free cells by
one, hence equation (4) will hold. Note that the number of
marked cells can never be falsely increased because that
would require the attacker to be able to mark a cell without
detection, which is hypothesized to be 1mposs1ble if our
signature function is not invertible.

Using equations (1) and (2), it is then possible to detect
the occurrence of tampering no later than the end of the
sweep phase of garbage collection, which is our second
goal. At that point, the number of marked cells plus the
number of free cells will have been counted and if the total
is greater than the total number of available cells (Tc), then
tampering has occurred. '

Our one remaining problem is the possibility of endless
replay during the mark phase. If the attacker always replays
unmarked cell values, then there is a potential for the mark
phase to loop forever in the presence of any cyclic lists. To
address this, we note one more equation.

Mc>Tec = Tc<Mc+ Sc 5)

This indicates that if the number of reachable cells Mc
ever exceeds Tc, then equation (2) will of necessity be true
and hence tampering must be occurring. Thus if we track the
number of cells we mark, we- are guaranteed to eventually
detect a loop and signal a replay attack.

11. Preliminary Performance Measurements

An implementation of the tamper-detecting Lisp system
has been completed. Preliminary performance
measurements-have been collected using g++ version2.95.3
on an Ultra-2 Sparc platform. These measurements must be
interpreted carefully because of the platform and because of
the following assumptions and implementation limitations
underlying those measurements.

The most important limitation concerns signing
overhead. We use a public domain, software-only
implementation of the MD5 signing code from RSA with an
average signing time of about 10 microseconds for signing
512 bits. This means that signing time dominates the current
set of measuréments and gives the appearance that the cost
of tamper-détection is large. Given signing hardware and/or
faster signing functions, it should be possible to reduce this
cost to, say, 1 or 2 microseconds, at which point the sig‘ning
cost becomes manageable.

The memory bandwidth between the secure co-
processor and the host also impacts the overall performance,
but it is not separately modeled in our performance
measurements.. Not only is every cell read by the secure co-
processor, the cell size increases because of the addition of

[—#—Anti-Tamper —8— Nomal —&—Time Ratio —8—Graph Size |

1000000

100000

1000077 ‘\‘_—/‘——o\._—-———'/
o I/ /\‘—_/.———0\..’*—‘/ <
100

10 —

Log Time (usec)

1
1 2 3 4 5 6 7 8 9 10

Graph Depth (x 10)

Chart 1. Graph marking times

the signature field. The commurication channel between the
host and the co-processor should be something like
Firewire, USB 2.0, or a direct PCI ‘bus connection to avoid

. bandwidth bottlenecks.

With these limitations in mind, Chart 1 shows some
preliminary performance measurements for doing the
garbage collection mark phase on acyclic graphs whose
depth ranges from 10 to 100. This particular measurement is
included because tamper-detecting garbage collection, and
marking in partlcular, is critical to the. operation of the
system. The list graphs to be marked are generated with
random widths in each level (up to a maximum of 64 cells)
and the number of roots is chosen randomly in the range 1
to 8. The Y-axis of the graph is the log of the elapsed time
in microseconds and the X-axis is the graph depth.

The top line represents marking time when anti-tamper
is activated. The second line from the top shows the normal
marking time. The bottom line is the ratio (about 17), and
the second line from the bottom line is the total number of
cells in the graph.

In summary, the performance measurements appear to
indicate. that a feasible tamper-detection Lisp
implementation can be constructed if certain bandwidth and
signing speeds can be achieved. But detailed and accurate

performance measurements “must . wait until the
implementation is re-hosted onto real co-processor
hardware. Ry :

12. Related Work

The approach proposed in th1s paper is directly mspxred
by the prior work in tamper-detecting data structures. These
structures and 1mp1ement1ng code are stored in the host’s
memory and have the property that any attempt by the host
to tamper with the data structure will be detected. Examples
of such data structures include random-access memory [3],
simple linear lists [1][3], and stacks and queues [3][4].

The language approach has several advantages
compared to the data structure approach. It is more general
since the programmer can use any data structure that can be
implemented in the language. Additionally, it hides the
complexity of tamper-detection. Programmers do not have
to worry about the problem of tampering because a solution
is built into the language implementation and is inherited by
all programs executed by the language interpreter. This
solution also reduces and simplifies the code that must
reside on the host processor. Data structure specific code is
not required. Instead, the only required code is that
necessary to allow the secure co-processor to read and write
the host’s memory and to request the allocation of blocks of
the host’s memory. Thus using the language approach, it
should be easier to construct programs that can safely avail
themselves of untrustworthy host memory.

This work explicitly assumes the use of secure
hardware whose memory cannot be read or modified by the .
untrusted host. There exist software- -only solutions [14] to
the trusted computing problem that usevarious forms of
obfuscation to prevent an untrusted software program from
analyzing the actions of the trusted software. A recent
theoretical result [2] casts doubt on the generality of this

approach, and indicates that completely general software-
“only solutions may be impossible.

The use of cryptopaging [5]{13] is another possrble
alternative to the approach presented here. Cryptopaging
tréats the host as secondary memory and the secure co-
processor ‘uses it as the target for paging its memory. Replay
is prevented by maintaining a complete Merkle hash tree
[10] whose leaves are the available pages of the host
memory. The nodes of the Merkle tree are also kept in host
memory. Cryptopaging has the advantage that it 'is fast
because it uses modified hardware for signing and memory
retrieval. This is also a disadvantage since our approach can
use off-the-shelf hardware. Its other disadvantage is page-
size. Our approach accesses memory in smaller chunks and
uses language semantics to ensure that no replay occurs.
The cryptopaging approach uses additional memory for
storing the Merkle hash tree interior nodes.in the host
memory. It also must find a satisfactory trade-off between
page size and the size of the Merkle tree. An efficient
cryptopaging approach also requires a significant degree of
locality of reference. Languages like Lisp are notorious for
breaking paging algorithms because they rapidly lose any
locality of reference properties. Each approach has merits
and - deémerits and a more direct’ comparison usmg rcal
hardware would be mterestmg

13. Summary
This paper proposes the use of a tamper-detection

programming language - implementation plus a secure co-

processor to achieve trusted computing in an’ untrusted
environment. The claim that the implementation can detect
tampering rests on the following three arguments.

1. An attacker (the host) can never undetectably provide
corrupt data to the secure co-processor because all cells
in memory are srgned

2. Wrrte-one—per—epoch combined- with s1gmng of cells
guarantees that an attacker cannot successfully. replay
data during an epoch.... :

3. Replaying ' unmarked cell content during garbage

- collection can be detected using the counting technique.

‘ A preliminary implernentation of the tamper-detection
Lisp has ‘been completed Future research will attempt to
move this implementation to a true secure CO-Processor
environment.. Parallel research will examine possible
applications of this téchnique to more complex RAM
programmmg models

14. Acknowledgements

"This material is based in part upon work sponsored by
DARPA, SPAWAR, AFRL, and AFOSR under Contracts
N66001-00-8945, F30602-00-2-0608, and F49620-01-1-
0282. The content' does not necessarily reflect the position
or the policy of the Government and no official endorsement
should be inferred. The comments of Professors Devaribu
and Pandey of the University of California at Davis and
Tom Green of the Umversny of Colorado are also gratefully
acknowledged

{7] IBM ':Cryptographic .P‘rodu'cts,

15 References

[1] Amato, NM and M.C. Lour, “Checking Linked Data
Structures,” Proc. of the 24th Annual Int’l Symposium on
Fault-Tolerant Computing (FI'CS) 1994.

[2] Barak, B., O. Goldreich, R. Impagliazzo, S. Rudrch A. Sahai,
S. Vadhan, and K.Yang, “On the (Im)possibility of
Obfuscating Programs,” CRYPTO 2001, Santa Barbara, CA,
19-23 Aug 2001. . .

[3] Blum, M., W. Evans, P. Gemmell S. Kannan,. and M. Noar,
“Checking the Correctness of Memories,” - Algorithmica
12(2/3):225-244 (1994). . .

[4] Devanbu, P. and S. Stubblebine, “Stack and Queue Integrity
on Hostile Platforms,” IEEE Transactions on Software
Engineering 28(1):100-108 (Jan 2002).

[5] Gassend, B., D. Clarke, M. van Dijk, S. Devadas, and E.
Suh, “Caches and Merkle Trees for Efficient Memory.
Authentication,” Proc. of the 9th High Performance Computer
Architecture Symposium (HPCA'OB) ‘Anahéim, CA., 8-12
Feb. 2003. . _ .

[6] Heimbigner, D., “A Tamper-Resistant Programming
 Language,” Department of Computer Science Technical
Report CU-CS-931-02, University of Colorado, 20 May 2002.
“IBM PCI Cryptographic
Processor General Information Manual,” Sixth Edition; May
2002, (http://www-3.ibm. corn/secunty/cryptocards/html/hbrar
y.shtml). -

[8] McCarthy, J., P. Abrahams, D. Edwards, T. Hart, and M.
Levin, Lisp 1. 5 Programmer’s Manual, MIT Press Second

' Edmon, 198s.

[9] Menezes, Al, PC van Oorschot andv S.A. Vanstone,
Handbook of Applzed Cryptography, CRC Press, October
- 1996. .

[10] Merkle, R.C.,” “A Certified D1g1ta1 S1gnature,” Proc.-of
Advances in Cryptology (Crypto ’89), 1989. ,

[11] Queinniec, C., “Lisp — Almost a whole Truth,” Résearch
~ Report - LIX/RR/89/03, ¥Ecole Polytechnique, France,
December 1989, pp. 79-106. :

{12] Schorr, H. and W. Waite, “An Efficient Machine'-lndependent
Procedure for Garbage Collection in Various List Structures,”
Communications of the ACM 10(8):501-—506 (August 1967)

[13] Smith, S., “Secure Coprocessing Applications and Research
Issues,” Los Alamos Unclassified Release LAUR -96-2805,
Los Alamos National Laboratory, August 1996.

[14] Wang, C., J. Davidson, J. Hill, and J. Knight, “Protection of
Software-Based Survivability Mechanisms,” Proceedings of
the 2001 Dependable Systems and. Networks (DSN'01). July,
Goteborg, Sweden.

[15] Yee B. and D. Tygar, “Secure Coprocessors in Electronic
Commerce Applications,” Proc. First USENIX Workshop on
Electronic Commerce, July 1995.

L

Intrusion Management
Using Configurable Architecture Models

Dennis Heimbigner and Alexander L. Wolf
Department of Computer Science
University of Colorado
Boulder, Colorado 80309-0430 USA
{dennis,alw}@cs.colorado.edu

University of Colorado
Department of Computer Science
Technical Report CU-CS-929-02 April 2002

© 2002 Deﬁnis Heimbigner and Alexander L. Wolf

ABSTRACT

Software is increasingly being constructed using the component-based paradigm in which
software systems are assembled using components from multiple sources. Moreover, these
systems are increasingly dynamic; a core set of components is assembled and then new
functionality is provided as needed by dynamically inserting additional components.

A newer trend closely associated with the use of component-based software is the post-
development use of configurable run-time architecture models describing the structure of the
software system. These models are coming out of the software engineering community and are
being used to manage component-based systems at deployment and operations time. The key
aspect of this trend is that these models accompany the software system and provide the basis for
defining and executing run-time monitoring and reconfiguration of these systems.

We believe that these models have the potential for providing a new and important source of
information that can be exploited to improve the management of intrusions directed against these
software systems. Our hypothesis is that they can provide a common framework for integrating
and managing all phases of intrusion defenses: phases including intrusion detection, response,
and analysis. We will show how these models can provide a framework around which to
organize intrusion-related data. We will also show how architecture-driven reconfiguration can
provide improved response, and how inconsistencies between the models and the actual system
state can support application-level anomaly detection and computer forensics analysis.

g%

1 Introduction

Software is increasingly being constructed using the component-based paradigm in which
software systems are assembled using components from multlple sources. Moreover, these
systems are increasingly dynamic; a core set of components is assembled and then new
functionality is provided as needed by dynamically inserting additional components.

A newer trend closely associated with the use of component-based software is the post-
development use of configurable run-time architecture models describing the structure of the
software system. These models are coming out of the software engineering community and are
being used to manage component-based systems at deployment and operations time. The key
aspect of this trend is that these models accompany the software system and provide the basis for
defining and executmg run-time monitoring and reconfiguration of these systems. :

We believe that these models have the potential for providing a new and 1mportant source of
information that can be exploited to improve the management of intrusions directed agamst these
software systems. Our hypothesis i is that they can provide a common framework for integrating
and managing all phases of intrusion defenses: phases including intrusion detection, response,
and ana1y51s We will show how these models can provide a framework around which to
organize intrusion-related data. We will also show how architecture-driven reconfiguration can
provide improved response, and how inconsistencies between the models and the actual system
state can support apphcatlon-level anomaly detection and computer forensws analysm

Our approach directly challenges the existing practice of basing intrusion management on low-
level features such as network packets or system call traces. The former is too far removed from
the operation of application software, and the latter provides at best limited insight into the
operation of the application. We recognize that these low-level features have been used because
they are readily available. However, this has resulted in treating applications as monolithic black
boxes whose internal operation is considered “out of scope”. This must change because most
intrusions now appear to exploit application level vulnerabilities: email viruses and ‘buffer
overflows, for example. We are saying that a new class of information is becommg available and
it should be used to improve intrusion management across the board.

In the remainder of this paper, we will first provide some background for our approach. We will
discuss the meaning of intrusion management and our intrusion management life cycle. Then in
subsequent sections we will examine the application of configurable architecture information to
1mprovmg the operation of intrusion management tools. Finally, we will discuss some research
issues that must be solved to achieve effective use of architecture information in intrusion

management.

2 Background

The idea of applying configurable architecture models to intrusion management comes from an
analysis of our DARPA funded Willow project at the University of Colorado. Our goal was to
investigate the extension of Willow to additional areas of intrusion management. Willow already
demonstrates the application of configurable run-time architecture models to intrusion prevention
and repair, and this was enabled, in turn, by the recent availability of powerful architecture
models and support for the dynamic configuration of software systems.

2.1 Willow

The Willow project [10] represents an early example of a framework that can utilize architecture
information to improve intrusion management. Willow provides a secure, automated framework
for reconfiguration of large-scale, heterogeneous, distributed systems. Reconfiguration is used to
tolerate intrusions and faults yet still continue to provide an acceptable level of service. Willow
supports both proactive reconﬁguration and reactzve reconfiguration (repalr) of software

systems.

Proactive reconfiguration adds, removes, and replaces components and interconnections to cause
a system to assume postures that achieve specific intrusion tolerance goals, such as increased
 resilience to specific kinds of attacks or increased preparedness for recovery from specific Kinds

of failures. The term “posture” refers to a set of policies and procedures ensuring survivability
against a particular set of threats to service while taking into account the tradeoff of performance
against protection. In Willow, a posture is embodied as a particular configuration of components
providing a partlcular level of functionality within a particular range of performance and secunty
parameters. Proactive reconfiguration can also cause a relaxation of tolerance procedures once-a
threat has passed in order to reduce costs, 1ncrease system performance, or even restore'

previously excised data and functionality.

Ina complementary fashion, reactive reconﬁguration adds, removes, and replaces components’

and interconnections to restore the integrity of a system in bounded- time once an intrusion has

been detected and the system is known or suspected to have been compromised. Recovery

strategies made possible by reactive reconfiguration include restoring the system to some

previously consistent state, adapting. the 'system to some alternative non—compromised '
configuration, or gracefully shedding non-trustworthy data and functionahty

Willow currently focuses on the 'problem of responding to intrusions This is a> problem that is
still largely handled by manual processes. Willow replaces this with automated reconfiguration
responses that can react to disruptions with a speed, accuracy, and scale not achievable by

manual procedures

2.2 Configurable Run-time Architecture Models -

The field of software architecture [16] has evolved to meet the need for design notations for
specifying structural and behavioral properties of complex systems constructed from coarse-
grain building blocks. It was originally developed to be used at design time to support early
analysis of software systems for high-lével properties. It is only more recently that it has been
adapted to operate at run-time.

Software architecture models provide high-level representations of the structure, behavior, and
key properties of a software system. Such models involve (1) descriptions of the elements from
which a system is built, (2) interactions among those elements, (3) patterns that guide their
composition, and (4) constraints on these patterns. In general, a particular system is defined in
terms of a collection of components, their interfaces, their interconnections (configuration), and

interactions among them (connectors).

As architecture models moved from design time to run-time, it became important to be able to
define multiple configurations for architectures. This is because a dynamic system requires the
architecture model to also support configurability: the ability to modify the structure of a system
to place it into a variety of configurations. Again, Willow provides a good example of this. The
approach adopted in Willow is derived from our earlier Software Dock project [8]. An
architecture model is annotated to represent a system family, Wthh represents the pos51b1e
versions and variants of the architecture of the system. :

As is traditional ini the configuration literature, a sequence of versions represents revisions of the
system - architecture over time. The set of variants represents the range of alternative
architectures. Configuring a system is the process of choosing a specific famlly instance and
modifying the run-time structure of a'system to conform to the chosen instance. ' This typically
- involves the addition, deletion and modification of the structural elements represented by the
architecture model: components interfaces, connectors, and constraints. The specification of
families in Willow is controlled by a set of properties that deterrmne that instance. More
information is provrded in a previous paper [9]

- We are deliberately using the term ¢ archltecture” somewhat broadly. In fact, we have 1dent1ﬁed a
range of architecture sub-models that represent the structure of a software system at various

stages of its operation from initial deployment to executlon time. Sectron 5 1 and Appendlx A

discuss these sub-models in more detail. : : :

Finally, we also are using the term “model” somewhat ambiguously. On one hand, we are using
the term to mean a notation for representing many specific models of specific software systems.
On the other hand, we use the term to refer to any specific instantiation representmg a Spe01ﬁc
: software system We trust that context is sufﬁc1ent to dlsamblguate the two meamngs c

3 Intrusion Ma_nagement Life Cycle

In order to organize our discussion showing
how - configurable run-time architecture :
models can benefit intrusion management, " REPEL | [Firewall, Re-posturing]
we will mtrodnce a 31mp-le life cyc.le. (Frgure- : WaRn | [DEF]

1) that contains the primary activities for - : . :

 pETECT | [Intrusion Detection]

handling intrusions from the initial attack to : . | REPAIR | [Reconfiguration, Tripwire]
the frnal prevention of repeat occurrences Gf ANALYZE | [Computer Forénsics]
that is possible). It is important to note that [.]-Example : ~)
this life cycle is defined from the defender’s = gxisting Tools " PREVENT | [Patch,Deploy]

point of view. The goal of this life cycle is to
provide a theme for integrating and relating
existing intrusion management components. It should not be confused with an attack model,

which in its usual form describes the sequence of steps taken by an attacker to exploit a grven
vulnerability in order to gain special privileges in the defender's domain.

Figure 1. Ihtrusion Management Life Cycle

As illustrated in Figure 1, our life cycle consiSts of six phases.

1. Detect — The initial detection that an intrusion has commenced or is about to commence.

2. Repel — An early response that is intended to quickly blunt an attack.

3. Warn - Srgnals sent to other intrusion tools and to related software systems to warn of the
presence of an intrusion and any details about its operatlon :

4. Repa1r - State changes necessary to recover some level of functionality and to undo damage
after an intrusion has run its course.

5. Analyze — An examination of the system state after an intrusion to determine the nature of
the attack and possible future defenses against it.

6. Prevent — Modifications to the system so as to make it resistant to similar intrusions in the
future.

It is important to note that this life cycle is 1deallzed a feature it has in common with most life
cycle diagrams. The steps will not always occur in strict sequence. In practice, many of these
steps will occur in parallel or in arbitrary order: Repel and Warn, for example. Further, multiple
attacks may occur srmultaneously, so the life cycle will be multiply instantiated. Finally, there
are implicit backward loops in the cycle to indicate that some steps may fail and need to be
retried or that the output of one step can modify the actions of another. With those caveats, we
will examine each phase and discuss the way in which architectural models can significantly

improve the operation of that phase.

4 Applications of Models in Intrusmn Management

Configurable run-time archrtecture models enable several capablhtles applicable to intrusion
management. The most important one is the capab111ty to dynamically reconfigure systems (if
they are designed for it - see Section 5.3). Monitoring the internal operation of a software system
is another important capability. This can expose previously hidden information for use by
- external agents. Note that the two abilities are closely connected: monitoring may be enabled by
dynamically inserting various probes into the software. A third capability involves checking the
consistency of the architecture model, “especially of a running system, against a snapshot of the
current state of a system. Differences can provide clues about potential problems such as Trojan
horses. All of these capabilities have roles in the intrusion management life cycle.

4.1 = Detecting Intrusions

The initial phase of intrusion management is to detect that an intrusion is occurring or to detect
warning signs of an impending attack. An intrusion detection system (IDS) is usually used for
this purpose, and IDSs are the most common tool available for intrusion management. ‘

Intrusion detection systems are traditionally classified as either signature based (looking for
attacks) or anomaly-based (looking for deviations from good-behavior) or specification-based
(looking for deviations from a specification of good behavior). Existing signature and anomaly
based intrusion detectors are typically targeted at a low-level event stream such as IP packets.
Specification-based detectors raise the level somewhat by addressing system calls or log entries
issued from an application program. This low-level focus has been reasonable because the event

streams (packets and system calls and logs) are readily accessible.

We believe that combining component-based programs and architecture information can allow
new forms of IDS that have substantially better insight into the internal operation of software
systems. That is, it will no longer be necessary to treat the software as a black box. An ab1hty to
monitor the internal operation of a software system can be exploited to look for anomalous
behavior. Thus, we can augment and complement any existing IDS to allow it access to more
information to analyze in order to detect intrusions.

Architecture information can also support a secondary, but interesting, new capability:
reconfiguration of the IDS. In our role in the ARO-sponsored Hi-DRA intrusion detection
project, the IDS itself is treated as a complex distributed system subJect to reconﬁguratlon to
include new sensors and to adapt to new classes of attacks -

4. 2 Repellmg Intrusions

A quick response to a detected intrusion may blunt, or at least soften, the effect of an attack
before it has a chance to do real damage. At the moment, most response mechanisms are ad-hoc
often manual, and involve such things as changing the filter rules on a firewall.

Reconﬁguratlon as prov1ded by WIHOW has the potentlal for prov1d1ng a more comprehenswe
mechanism for repelhng intrusions. From the perspectlve of reconﬁgurable architectures,
changing firewall rules is just a specific form of posturing in which the firewall is reconfigured
dynamically to resist and attack. This approach can be generalized to support reconfiguration of
other software systems as well, including the IDS, and apphcatlon services such as web servers.
To the extent that effective postures can be deﬁned reconfiguration then prov1des a common
mechanism for 1mplement1ng those postures.

4.3 ‘Warning Others

Intrusion management should be a group activity where attacks against one software system or
against one administrative domain generate warning messages to interested parties. The IETF is
working on the Intrusion Detection Exchange Format (IDEF) [5] for encoding intrusion events.
This is a follow-on to the DARPA Common Intrusion Detection Framework (CIDF) [19] effort.

Architecture information again allows the black box of software systems to be opened up to
provide more information. Thus, it supports more detailed reporting of intrusion events against
those systems. It is also p0531ble to report the success or failure of architecture-based repel or

repair attempts.

4.4 Repairing Damage

A successful attack can be expected to damage various components of a system. This includes
defacing web pages, inserting Trojan horses or viruses, and deactivation of software systems
(including intrusion management systems). To date, damage repair is mostly a slow, manual
process involving the attention of a highly skilled system administrator. Some tools such as
Tripwire [21] can significantly help in the restoration process.

Architecture-based tools such as Willow have the potential to automate much more of the repair
process by using the expected run-time architecture as the specification against which the
damaged state is compared. The dlfference between model and reality can be used to

automatically reconstruct a working system by reconfiguring various software systems to'clear
out damaged components and to restart correct versions. Of course, it is important not to
minimize the difficulties. Determining the state of the compromised system can be difficult, and
repairing state in general is hard and requires careful checkpointing. Additionally, finding trusted
sources from which to get undamaged components must also be addressed. Nevertheless,
reconfigurable architecture models would appear to provide much of the information necessary

to aceomphsh these tasks

4.5 Analysns of Intrusions (Computer Forensxcs)

Computer forensics is the process “of analyzing the state of a computer system after an apparent
intrusion in order to determine the mechanisms and damage attributable to the intrusion.
" Simplifying somewhat, the state of the art in forensics involves examining raw data (i.e., core
dumps and file system dumps) looking for anomalies at the level of file descriptors or file
checksums. The Coroner’s Toolkit [4] provides a set of tools to help with these examinations,

but the process is still slow and labor intensive.

Architecture models again have the potential to provide more and better information to the
analyst to improve his effectiveness. Automated tools that analyze core dumps can do ‘this by
matching the dumped state against the model and detecting and noting differences. Thus, the
analyst is given an archltecture level view of what systems were running at the time of the failure
and how those systems differed from the expected structures. The model also provides a general
structure on which to hang additional annotations about other information such as file descriptors
and process identifiers. Thus it can provide additional automated help in orgamzmg all of the
raw information extracted from the core dump.

4.6 Preventing Repeated Intrusions

The last stage in our intrusion management life cycle is prevention of future attacks. Of course
this requires some knowledge about the nature of the attack, which must come from an analysis
of the attack. The output of an analysis is some form of proactive response that can be applied to
existing systems to place them into postures capable of resisting the attack in the future.
Traditionally, this involves file patches. But patching of complex distributed systems, especially
while they are running, can be difficult. For systems that cannot éasily be stopped, the ability to
reconfigure dynamically, using architecture models, prov1des an 1mportant new capab111ty for

responding quickly to intrusions.

5 Research Issues

We have outlined the application of configurable run-time architectures to intrusion management
and have indicated how it might improve the current state of the art in each phase. Substantial
research remains, however, in order to actually achieve these improvements. In the following

sections we discuss some of the research topics that need addressing.

5.1 Architecture Sub-Models

We recognize that the “architecture” of a software system differs as the sYstem moves through its
operational life cycle. Thus, before being deployed, the architecture may refer to the whole
family of deployable variants of the system depending on environmental details such as the

target host operating system. At the time that the system is executed, the running system will
have a structure that is dependent again on various environmental parameters, although it should
be consistent with the deployed architecture. Appendix A expands on the kinds of sub-models
we have identified as necessary. _ _ .

5.2 Populatmg the Models

Given a set of modeling notations, we must construct models for specific software systems (and
environments). We believe strongly in reusing existing information, so we have identified a set
of sources for various kinds of information that can be used to construct specific model instance.
Example sources mclude the DMTF CIM model (dmtf org) and SNMP and associated MIBs

5.3 Infrastructure

We will need substantial infrastructure to support the use of configurable run-time architecture
information in intrusion management. Willow provides much of the infrastructure, but it is
tailored for intrusion response. It currently has no support for intrusion detection or computer
forensics, for example. For the infrastructure, we recognize a number of important problems that
need to be solved. :

Not all apphcatlon software is designed to be reconﬁgured We are addressing this problem
i Willow through a combination of standardized APIs and explorations of specific
arch1tectural styles (such as J2EE) for which reconfiguration is possible [17].

. Maintaining fidelity between running systems and the models is difficult because of the
potential speed with which the runmng system’s state can change

The ability of design-time architecture models to represent run-time information is still
somewhat speculative. Prototypes exist, but have not been widely applied. ’

It would be desirable to have a common modeling notation for all the models’ we have
identified. Existing models use a wide variety of notations. We are exammmg RDF [12] and
DAML [22] for this purpose.

6 Related Work

The Intrusion Tolerant Architecture project [20] at SRI is one project that is making explicit use
of architecture information for security purposes. However, their goal is to analyze specific
-architecture styles at design time to verify selected properties relating to intrusion tolerance.
They do not appear to be making use of the architecture models at run-time and they do not

appear to be addressing run-time reconfiguration.

Another SRI project, Emerald [2], uses an application specific monitor to extract application
level information. While not apparently based on architecture information, it should be possible
to modify Emerald monitors to use such information. It is even possible that some form of
automated construction of such monitors could be achieved. .

Many architecture description languages (ADLs) have been developed to model architectures.
Examples of ADLs include C2SADEL [15], Darwin [14], Rapide [13], UniCon [18], Wright [1],
and ACME [7]. An important new entry into this field is the University of California, Irvine
(UCI), xArch ADL [6], which we are using in the Willow project. xArch is an extensible, XML-
based, standard representation for describing architectural models and for precisely capturing the
structure of a software system. xArch is unique in providing'a simple base specification with an
incremental set of extensions. With the exception of xArch (v1a Wlllow) none of these ADLs
have as yet been applied to intrusion management.

CFEngine [3] is a system administration tool for keeping systems running using a homeostasis
approach It unfortunately embeds any architecture information in agents (i.e. scnpts) and 50 it
is difficult to extract them in the form of declarative models. A

The SHIM intrusion detection system [11] is one of the first specification-based IDS. It
compares a specification of the behavior of an application program to the specification. Behavior
is defined by the trace of system calls or log entries emanating from the program. SHIM focuses
on these traces and this limits its ab111ty to detect intrusions. It is, however, targeting the correct
level (application software), and a combination of its behavior specification with an architecture

model would be a promising research target.

7 Next Steps

Willow represents the first step in applying configurable run-time architecture information to
intrusion management. The next step is to pick an additional phase of the intrusion life cycle and
explore the application of architecture information to that phase. Currently, we are looking at
architecture-driven computer forensics as the most promising target. This is because the current
tools for forensics appear to be quite low-level and so there is significant potential for
improvement. Farther out, we can explore adding architecture to an intrusion detection system.
We have identified the UC Davis SHIM project [11] as a good starting point because it is a
specification-based IDS targeting anomaly detection against application software systems.

8 Acknowledgements

This material is based in part upon work sponsored by DARPA, AFRL, ARO and SPAWAR
under Contract Numbers F30602-00-2-0608, F30602-01-1-0503, F49620-01-1- 0282, DAAD19-
01-1-0484, and N66001-00-8945. The content of the information does not necessarily reflect the
position or the policy of the Government and no official endorsement should be inferred.

9 References

[1]

(2]

3]

(4]
(5]

[6]

(71

(81
(]
[10]

[11]
[12]

[13]

[14]

[15)

Allen, R. and D.Garlan. “A Formal Basis for Architectural Connectlon” ACM Transactions on Software
Engineering and Methodology 6(3): 213-249 (July 1997). .
Almgren, M. and U. Lindqvist. “Application-Integrated Data Collection for Security Monitoring”. In Recent

Advances in Intrusion Detection (RAID 2001)”. pp. 22-36. Davis, California, Oct. 2001." MONTH =
{October} Springer (pub.) LNCS 2001. .

Burgess, M. “Computer Immunology” In Proc. of the 12" Usenix Systems Admmzstratton Conf. p. 283.
1998.

Coroner’s Toolkit Web Page. http: //www porcupme org/forensrcs/tct html.

Curry, D. and H. Debar. “Intrusron Detection Message Exchange Format Data Model and Extens1b1e Markup
Language (XML) Document Type Definition”. IETF Intemet Draft. Dec. 2001. http //www.ietf org/internet-
drafts/drafi-ietf-idwg-idmef-xml-06.txt A

Dashofy, E., A. van der Hoek, and R.N. Taylor. “A Highly-Extensible, XML-Based Architecture Description
Language”. Proc. of The Working IEEE/IFIP Conference on Software Archrtecture Amsterdam, The

" Netherlands, August 2001.

Garlan, D., R. Monroe, and D. Wile. “ACME: Ah Architecture Description Interchange Language” In Proc.
of CASCON '97. IBM Center for Advanced Studies. pp. 169- 183. Nov. 1997. °

_Hall, R., D. Heimbigner, and A.L. Wolf. “A Cooperative Approach to Support Software Deployment Using

the Soﬂware Dock”. In Proceedmgs 1999 International Conference on Software Engxneermg ‘Los Angeles,
California, May 1999, pp. 174-183.

Heimbigner, D., RS Hall, and A L. Wolf. “A Framework for Analyzing Conﬁguratrons of Deployable
Software Systems”, In Proc. of the 5™ JEEE Int'l Conf. 'on Engineering of Complex Computer Systems. pp.
32-42. Las Vegas, NV, October 1999.

Knight, J., D. Heimbigner, A. Wolf, A. Carzaniga, J. Hill, and P. Devanbu. “The Willow Surv1vab111ty
Archltecture” Proc. of the Fourth Information Surv1vab1hty Workshop (ISW-2001), 18-20 March 2002,
Vancouver, B.C.

Ko, C., P. Brutch, J. Rowe G. Tsafnat 'K. Levitt. “System Health and Intrusion Monitoring Using a
Hlerarchy of Constraints”. RAID 2001, pp. 190 203.

Lassila. O. and R.R. Swick (ed). “Resource Descrlptlon Framework (RDF) Model and Syntax Spemﬁcatron
W3C Recommendation 22 February 1999. http://www.w3.org/TR/1 999/REC-ra}’ syntax-19990222.

Luckham, D. C., J.J. Kenney, L.M. Augustin, J. Vera, D. Bryan, and W. Mann. “Specification and Analysxs
of System Archltecture Using Rapide”. IEEE Transactions on Software Engineering 21(4):336-355 (April
1995).

Magee J. and J. Kramer. “Dynamic Structure in Software Archltectures” In Proc. of the 4" ACM SIGSOFT
Symposium on the Foundations of Software Engineering. pp. 3-14. Oct. 1996.

Medvidovic, N., D.S. Rosenblum and R.N. Taylor. “A Language and Environment for Archltecture-Based
Software Development and Evolution”. In Proc. of the 1999 Int’l Conf. on Software Engineering. pp. 43-54.
May 1999.

9 BEST AVAILABLE COPY

[16] Perry, D.E. and A.L. Wolf. “Foundations for the Study of Software Archltecture” SIGSOFT Soﬁware
Engineering Notes, pp. 40-52. Oct.1992.

[17] Rutherford, M., K. Anderson, A. Carzaniga, D. Heimbigner, and A. L. Wolf “Reconfiguration in the
Enterprise JavaBean Component Model”. Department of Computer Science, University of Colorado
Technical Report CU-CS-925-01, December, 2001. o

[18] Shaw, M., R. DeLine, D.V. Klein, T.L. Ross, D.M. Young, and G. Zelesnik. “Abstractions for Software
Architecture and Tools to Support Them”. IEEE Transactions on Software Engineering 21(4). 314-335
(April 1995). _

[19] Staniford-Chen, S., B. Tung, and D. Schnackenberg. “The Common Intrusion Detection Framework
(CIDF)”. In Proc. of the 1" Information Survivability Workshop. Orlando FL, October 1998.

[20] Stavridou, V. Intrusion Tolerant Architectures Project Web Page. SRI International.
http://www.sdl.sri.com/projects/itarch. : :

[21] Tripwire Corp. Web Page. hitp://www.tripwire.com/.

[22] van Harmelen, F., P.F. Patel-Schneider, and I. Horrocks (ed) . “Reference description of the DAML+OIL
(March 2001) ontology markup language”. http://www.daml.org/2001/03/reference.

Appendlx A. Archltecture and Environment Sub-Models

In order to support proper reconﬁguranon at run-time, it is necessary to 1dent1fy the full range of
sub-models comprising the architecture. We have begun this process as part of the Willow
project, and currently recognize the following sub-models,. v

Family Model: The family model represents the range of legal oonﬁgurations of a software
system architecture. It specified the possible configurations over both the artifacts that comprise
a software system as well as the run-time components (clients and servers, for example).

Deployment Model: The .deployment model represents a spemﬁc instance out of the
configurations defined by the Family model. The choice is controlled by external propertles
from the environment into which the system is deployed. This particular model is one that is
often overlooked because it represents the structure of the system at the level of deployed
artifacts and thus is not always recognized as having a model. For an example of this, refer to the
University of Colorado Software Dock project [8].

Activation Model: The activation model represents the running system. This model is a
derivation of both the Family model, which specifies the components, and the deployment
model, which specifies the actual files containing the code for those components. This model
reflects the actual executing components and their connections over time. This model is also
constructed through reference to it operational environment. This model also has significant
dependency information associated with it to deﬁne for example, startup/shutdown

dependencies.

Although we will not detail them here, we also have identified several environmental models
whose definition is needed to accompany our architecture models. These include a Host model, a
Network model, and an Administrative model. '

10

Reconfiguration in the Enterprise JavaBeari_
Component Model

Matthew J. Rutherford, Kenneth Anderson, Antonio Carzaniga,
Dennis Heimbigner and Alexander L. Wolf)

Department of Computer Science, University of Colorado,
‘ Boulder, Colorado 80309-0430 USA,
{matthew.rutherford,kena,carzanig,dennis,alw}@cs.colorado.edu

. Abstract. Reconfiguration is the process of applying planned changes
to the communication, interconnection, componentization, or function-
ality of a deployed system. It is a powerful tool for achieving a variety of
desirable properties of large-scale, distributed systems, including evolv-
ability, adaptability, survivability, and continuous availability. Current -
approaches to reconfiguration are inadequate: some allow one to describe
a system’s range of configurations for a relatively broad class of system
architectures, but do not provide a mechanism for actually carrying out -
a reconfiguration; others provide a mechanism for carrying out certain
kinds of limited reconfigurations, but assume a specialized system archi-
tecture in order to do so. This paper describes our attempt at devising a
reconfiguration mechanism for use with the popular and widely available
Enterprise JavaBean (EJB) component container model. We describe
extensions to the basic services provided by EJB to support the mech-
anism, a prototype implementation, and a case study of its application

" to a representative component-based distributed system.

"1 Introduction

Subsequent to their development, software systems undergo a rich and complex
set of management activities referred to as the deployment lzfe cycle [3,6]. These
activities include the following.

— Release: packaging all artifacts and configuration descriptions needed to.in-
stall a system on a variety of platforms.

— Install: configuring and assembling all artifacts necessary to use a released
system. Typically this involves selecting from the release the configuration
that is compatible with the specifics of the intended operating environment.

—. Activate: putting installed software into a state that allows it to be used
Typically this involves allocating resources.’

— - Deactivate: putting installed software into a state that makes it unable to.
be used. Typically this involves deallocating resources.

— Reconfigure: modifying an installed and possibly activated system by select-
ing a different conﬁguratlon from an existing release. Typlcally this activity
is intended to satisfy an anticipated variation in operational requirements
and, thus, is driven by external pressures. ‘

J. Bishop (Ed.): CD 2002, LNCS 2370, pp. 67-81, 2002.
© Springer-Verlag Berlin Heidelberg 2002

BEST AVAILABLE COPY

68 Matthew J. Rutherford et al.

— Adapt: modifying an installed and possibly activated system by selecting a
different configuration from an existing release. This activity differs from
reconfigure in that it is intended to maintain the integrity of the system in
the face of changes to the operating environment and, thus, is driven by
internal pressures.

— Update: modifying an installed and possibly activated system by installing
and possibly activating a newly released configuration.

— Remove: removing from the operatmg environment the installed artifacts of

a system.
— Retire: making a release unavailable for deployment.

Many commercial tools exist to address the “easy” pa.rt of the problem, namely
“the activities of release, install, remove, and retire (e.g., Castanet, InstallSheild
[7], netDeploy (12], and RPM [1]), but none that covers all the activities. Re-
search prototypes have made strides at addressing dynamic reconfiguration,
but are generally conceived within restricted or specially structured architec-
tures [2,8,9,11]. :

In this paper we present our attemnpt at improving support for the activities
of reconfigure, adapt, and update. Although the context and drivers for these
three activities differ substantially, they clearly share many of the same techni-
cal challenges with respect to the correct and timely modification of a system.
Therefore, in this paper we simply refer to the three activities collectively as

reconﬁguratlon” using the individual activity names only when necessary.

In earlier work, we developed a tool called the Software Dock to automate
the configuration and reconfiguration of distributed systems [3,4,5]. However, the
Software Dock is currently restricted to the reconfiguration of installed systems
that are not active. Activated systems complicate support for reconfiguration in
at least three ways: (1) maintaining consistent application state between modifi-
cations; (2) coordinating modifications to concurrently active components; and
(3) ensuring minimum disruption or “down time”.

To help us better understand the challenges of reconfiguring activated sys-
tems, we embarked on an effort to study the problem in a particular context.
The context we chose is the widely used Er_lterprlse JavaBean (EJB) component
framework [10]. EJBs are distributed components and, thus, further raise the
level of complexity of software deployment activities, since the activities may
have to be coordinated across multiple network nodes. :

Further framing the problem, we delineated a space of reconfigurations that
we wished to address in the study, (Table 1). We consider three media of modifi-
cations leading to reconfiguration: parameters, implementations, and interfaces.
We also consider whether or not modifications to multiple EJBs are dependent
or independent; a dependency implies the need for transactional modification.
In fact, the modifications should be both synchronized and transactional, since
the system could be unstable if the reconfiguration is not successful on all nodes.
On the other hand, there may be modifications that do not change the contract
between components, and while it may be desirable for these changes to be made
on all nodes, the changes do not need to be coordinated.

Reconfiguration in the Enterprise JavaBean Componert Model 69

Table 1. Kinds of Reqonﬁgurations

Independent Dependent
Parametric Preprogrammed modification Preprogrammed modification
applied to a single compo- applied to multiple compo-
nent. nents.
Implementation Modification to the imple- Modification to the ‘imple-
: mentation of a component mentation of a component
that does not require a mod- | that requires a modification
ification to the implementa- to the implementation of its
tion of its clients. clients. '
Interface Modification to the interface | Modification to the interface
of a component that does not of a component that requires
require a modification to its a modification to its clients.
clients. ' o :

A parametric reconfiguration is one that a component is itself designed to
handle. It reflects a common way of planning for change in software systems,
namely by having certain options specified as parameters through some exter-
nal means such as a property file or database entry. By changing the parameter
values, modifications can be made to the behavior of a software system without
having to modify any of its executable software components. This type of recon-
figuration might have to be coordinated across multiple nodes. For example, a
parameter might be used to control whether or not a commumcatlon channel is
encrypted, requiring distributed, communicating components to coordinate their
response to a modification in this parameter. : :

An implementation reconfiguration is one in which only the implementa-
tion of a component is modified, but not its interface. Of course, the goal of
separating implementation from interface is, in part, to isolate implementation
modifications. Nevertheless, in some cases the effect of the modification does
indeed propagate to the clients of the component. For example, a component
may expose a method that takes a single string as its argument. The format of
this string is important, and an implementation modification in the component
may alter the expected format of this argument. This would require all client
components to also modify their implementation to conform to the new format,
even though the exposed interface did not charnge.

Finally, an interface reconfiguration results from the most pervasive modifica-
tion to a component, affecting both the interface and implementation. Typically,
an interface modification must be coordinated with client components. But this
need not always be the case. For example, the modification may s1mply be an
extension to the interface.

While this space may not be a complete expression of reconﬁguratlon sce-
narios, it is sufficiently ri¢ch to exercise our ideas. In the next section we provide
some background on the EJB framework, pointing out some of its shortcomings
with respect to reconfiguration. Following that we introduce BARK, a proto-

70 Matthew J. Rutherford et al.

type infrastructure for carrying out sophisticated EJB reconfigurations. We then
demonstrate BARK by applying it to the reconfiguration of a distributed appli-
cation that we built. The demonstratlon covers the six kinds of reconfigurations

descrlbed above

2 Background: Enterprise JavaBearis

The Sun Microsystems Enterprise Java initiative is a suite of technologies de-
signed to provide a standard structure for developing component-based enter-
prise applications. The technologies address issues such as database connectivity,
transaction support, naming and directory services, messaging services, and dis-
tribution. EJBs are the cornerstone of the Enterprise Java initiative. EJBs are
distributed components, intended to exécute within so-called containers that
handle much of the complexity inherent in multi-threaded, database-driven,
transactional applications; theoretically, the use of the EJB framework should
allow developers to concentrate on the business logic of applications. The EJB
specification provides strict guidelines about how EJB components must be pack-
aged, and how they can reference other components. These guidelines provide a
structure in which an automated deployment system can handle various man-

agement tasks.
EJBs come in three flavors: stateless session beans, stateful session beans and

entity beans. The EJB 2.0 specification also defines a fourth flavor, message-
driven beans, which are invoked by the arrival of a message to a specific topic
or queue; here we only deal with the first three types of EJB. Stateless ses-
sion beans are components that do not maintain any state between invocations.
Essentially, stateless session beans provide utility functions to clients. Stateful
session beans are components that need to maintain a conversational state on
a per-client, per-session basis. That is, a different instance of a stateful session
bean implementation class is used for each client, and its state is maintained
between method invocations until the session is terminated. Entity beans are
used to handle persistent business objects. This means that they are used to
represent objects whose state can be shared across all the clients of the system.
Typically, entity beans are used as a software representation of a single row of a
query into a relational database.

Part of the EJB framework relates to the so-called “hfe cycle” stages that
an EJB implementation instance goes through as it is servicing requests. State-
less session beans have a very simple life cycle, since. the same instance can
repeatedly service requests from different clients without the special handling
that is required for stateful beans. For stateful beans, the life cycle is a bit
more complicated, since the instance must be associated either with a particular
client across multiple method calls or with a particular persistent entity. EJB
containers maintain the state of component implementation instances using the
following four EJB life-cycle methods. ’

~ 'Activate: the first method called after a stateful EJB is deserialized from
secondary storage. Any resources that it needs should be alloca,te_zd.

Reconfiguration in the Enterprise JavaBean Component Model 71

— Passivate: the last method called before a stateful EJB is serialized to sec-
ondary storage. Any resources that it holds should be released. .

— Load: valid for entity beans only, this method instructs the instance to re-
trieve current values of its state from persistent storage.

.— Store: valid for entity beans only, this method instructs the instance to save
current values of its state to persistent storage.

Note that in EJB terminology, “deployment” is the process by which an EJB
server loads an EJB package and passes it to the container to make it available
to clients. In this paper we avoid this restricted definition of deployment, since
it can be confused with the broader meaning described in Section 1.

Once the classes that comprise an EJB have been developed, they then must
be packaged i in a standard fashion so that EJB servers can install them properly:
Typically, all the classes that are needed for the EJB to run (excludmg system
classes that are available to all components) are assembled into a JAR (Java
Archive) file that includes deployment descriptors identifying the standard set
of classes that permit the EJB to be managed ‘and used (the so-called home,
remote, and 1mplementat10n classes). The descriptors also typically include the
JNDI (Java Naming and Directory Interface) name to which the interfaces to
these classes are bound. Another important part of the standard deployment
description includes information about any other EJBs upon which the given
component depends.

The packaging specification for EJBs allows multiple EJBs to be packaged
together in a single EJB JAR file. An EJB container handles all of the EJBs
packaged together as a single application unit; once EJBs are packaged together,
they cannot be maintained separately from the other EJBs with which they were
packaged. In our work we therefore assume that a single EJB JAR file is described
as containing a single component, with each EJB in the package representing a
different view onto that component. Thus, the decision made by the software
producer about the packaging of EJBs essentially drives the granularity of how
the deployment life cycle of those EJBs can be managed.

Deployment in EJB-based systems mvolves various combmatlons of a small

set of common actions.

— Retrieve a new component package from a software producer (install and
update). -
- = Load a component package into an EJB server (actzvate reconﬁgure update,
and adapt).
— Unload a component package from an EJB server (update, deactwate, and

reconﬁgure)
— Reload a component package into an EJB server to freshen its bmdlngs to

other components (reconfigure, update, and adapt).
— Modify a database schema, database data, or content file (activate, update,

reconfigure, and adapt).

One of the major problems with these actions is that they can be heavy handed.
This is especially true of the actions that must be taken to reconfigure, update,

72 Matthew J. Rutherford et al.

or adapt an activated system, where component packages must be reloaded just
to make sure the bindings are up to date. This invasive process implies that
some or even all of the components in a system must be shut down for some
period of time, which is simply unacceptable in high-volume, high-availability
applications such as the electronic-commerce infrastructure systems that EJBs
were largely meant to support. c

To a certain extent, this problem of heavy handedness is dictated by the way
that component package descriptors are used to specify the dependencies among
EJBs. Included in the package descriptor for a component is the well-known
naming service name of all other referenced components. When a referenced
component is loaded by its EJB apphcatxon server, the well-known name is bound
into the naming service and the component is available. This presents a problem
when updating a component that has dependent clients: If the same well-known
name is chosen for the new version of the component, then the existing version
must first be unloaded before the new version can be loaded, meaning that
the system - wxll effectively be unable to satisfy requests for a time. If instead a
different well-known name is chosen for the new version ‘of the component, then
the package descriptors for all of its clients must be updated to be told of this
new name, which means that they must be reloaded by their EJB apphcatlon
servers, again resulting in down time. :

3 Approach' The BARK Rec‘onﬁguration Tool

Our approach to the problem is embodled in a prototype tool we call BARK
(the Bean Automatic Reconfiguration frameworK). It is designed to facilitate the
management and automation of all the activities in the deployment life cycle for
EJBs. BARK provides some basic functions, such as the ability to download
component packages over the Internet and load them into the EJB container.
Other, more sophisticated aspects of the framework manipulate the component
package descriptors to provide fine-grained control over a system formed from
EJBs, even down to the level of individual bindings between components. In a
sense, the functionality that BARK presents to its users defines an “assembly
language” for EJB deployment management.

*It is important to note that BARK is only a management tool; it does not
provide any analysis of the running system, nor does it make recommendations
or determine automatically what steps need to be taken to reconfigure a system
in a particular way. As a management tool, it provides a certain level of checking
to make sure that the user does not put the system into an unstable state un-
_ wittingly. However, BARK generally allows the user to force any action, thereby

allowing the user to fully control the recon